

WEI DIAN JI

月刊,1972年创刊 第56卷 第10期(总第358期) 2023年10月28日出版 中国科技论文统计源期刊 中国学术期刊(光盘版)全文收录期刊 《中国核心期刊(遴选)数据库》收录期刊 《中文科技期刊数据库(全文版)》收录期刊 中国科学引文数据库来源期刊 RCCSE 中国核心(扩展版)学术期刊 美国《乌利希期刊指南》(UPD)收录期刊 美国《剑桥科学文摘(工程技术)》(CSA)来源期刊 英国《科学文摘》(Inspec)检索源期刊 中国机械工业优秀期刊 陕西省优秀期刊

反电势均值滤波的无刷直流电机无感控制策略 ……………

...... 宋开元, 吕晓东(30)

期刊基本参数: CN61-1126/TM * 1972 * m * A4 * 82 * zh * P * ¥8.00 * * 14 * 2023-10

国外定价: \$8.00

EП

广告经营许可证: 6101004004005

刷: 西安创维印务有限公司

考虑摩擦的电动舵机控制问题研究	王康	昊,	王儒	旲(39)
多馈入交直流系统无功补偿器变论域模糊 PI 控制算法 黄浩军,张	健,	张	迪,	等(43)
电压跌落下的双馈风力发电机网侧变流器自适应变惯量控制方法 张约	Ľ义,	呼木	吉乐	图(49)
基于参数自适应永磁同步电机电流控制	王朝	庆,	李鸿	高(55)
某型飞机牵引车的电机矢量控制研究 王福泰,齐向	9阳,	李韶	亮,	等(59)
独立光伏发电系统中逆变器方案的选择与设计		••••	邱	燕(66)

新能源汽车技术

增程式汽车发电机噪声机理分析与控制	黄煜明,	郭新华,	李昭代,	等(70)
车用永磁同步电机的电磁噪声优化研究	陈致初,	史俊旭,	周 洋,	等(77)

 く彼良良机》(良利)

 部定代号: 52 - 92
 订价: 8 元/期
 年价: 96 元/年
 编辑部邮购(含快递费): 300 元/年

 な迎投稿! 欢迎订阅! 欢迎刊登广告!

 国内刊号: CN61 - 1126/TM

 加 箱: micromotors @ vip. sina. com
 地
 批: 高新区上林苑四路 36 号(710117)

 国际刊号: 129 - 84276641

MICROMOTORS

Founded 1972 • Monthly • Public Publication Vol. 56 No. 10 (Serial No. 358) Oct., 2023

Authorities: Xi' an Micromotor Research Institute Co. Ltd. Sponsor: Xi'an Micromotor Research Institute Co. Ltd. Edited & Published: MICROMOTORS Editorial Department Chief Editor: TAN Shunle Add. : No. 36, shanglinyuan 4th road, Xi'an (710117) Tel.: 86 - 29 - 84276641 Online Submission System: wdj. paperopen. com E - mail: micromotors@vip. sina. com Http: //www.china - micromotor.com.cn Distributor: Xi'an Newspapers and Periodicals Publish Office Domestic Subscription: Local Post Office & MICROMOTORS Editorial Department

Periodical Code: 52 – 92

Journal Code: <u>ISSN1001 - 6848</u> <u>CN61 - 1126/TM</u>

Foreign Subscription:

China National Publications Import & Export Corp. (P. O. Box 399, Beijing 100044, China) Overseas Code: M 4228 **Price**: \$ 8.00 Annual Price: \$ 96.00 Publication Date: Oct. 28, 2023

CONTENTS

Calculation of Inductance Parameters of Brushless DC Motor Under Bearing Fault
HUANG Haoran, ZHANG Bo(1)
The Magnetic Field Analysis and Torque Calculation of a Dual-stator Motor With a Yokeless
Radial Ring
Design of Servo Used for High Overload Highly Responsive Double-channel
······ ZHANG Xujie, HOU Wen(13)
Research on the Influence of Ambient Temperature Change on the Operating Characteristics of
Brush Motor $\cdots\cdots$ CUI Guanghui, ZHANG Zhihua, CAO Kuan, et al (20)
Analysis of Electrical Insulation Characteristics and Control Strategy of Ultrasonic Motors and
Friction Materials ZHANG Wu, ZHANG Xiuli, SHI Yudi, et al(25)
Position Sensorless Control Strategy of Brushless DC Motors Based on Back EMF Moving Av-
erage Filter SONG Kaiyuan, LYU Xiaodong(30)
Dynamic Modeling and Analysis of Steering Gear System Considering Friction
WANG Kanghao, WANG Ruhao(39)
Variable Universe Fuzzy PI Control Algorithm for Reactive Power Compensator in Multi Infeed
AC/DC Systems $\hdots\hddots\hdots\$
Adaptive Variable Inertia Control Method for Side Converter of Doubly-fed Wind Generator
Under Voltage sag ZHANG Hongyi, Humujiletu(49)
Current Control of Permanent Magnet Synchronous Motor Based on Parameter Adaptive $\ \cdots$
WANG Chaoqing, LI Honggao(55)
Research on Motor Vector Control of a Type of Aircraft Tractor
WANG Futai, QI Xiangyang, LI Shaoliang, et al(59)
Selection and Design of Inverter Scheme in Independent Photovoltaic Power Generation System
Analysis and Control of Noise Mechanism in Range-extended Electric Vehicle Generators
HUANG Yuming, GUO Xinhua, LI Zhaodai, et al(70)
Research on the NVH Optimization of Vehicle IPM Motor
······ CHEN Zhichu, SHI Junxu, ZHOU Yang, et al(77)

轴承故障工况下无刷直流电机的电感参数计算

黄皓然,张 博

(沈阳工业大学 电气工程学院, 沈阳 110870)

摘 要: 航空航天领域的电机发生轴承故障时无法立即停机检修,需要短时间内容错运行,为了解决运行中轴承故 障量化问题,通过绕组电感变化表达轴承故障程度。文章分析了滚动轴承故障机理,根据滚动轴承不同部件故障的 特点,建立了基于绕组函数法的解析模型计算轴承外圈、内圈、滚动体故障时的绕组电感,建立了有限元模型计算 轴承保持架故障时的绕组电感。结果表明:无刷直流电机轴承故障后的电感会高于正常值,出现波动,其幅值与频 率取决于轴承故障程度。

关键词:无刷直流电机;轴承故障;绕组函数法;绕组电感 中图分类号:TM36+1 文献标志码:A 文章编号:1001-6848(2023)10-0001-06

Calculation of Inductance Parameters of Brushless DC Motor Under Bearing Fault

HUANG Haoran, ZHANG Bo

(School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China)

Abstract: In the field of aerospace, when the motor has bearing fault, it cannot be stopped immediately for maintenance, and it needs to be operated in a short time. In order to solve the problem of quantifying bearing faults during operation, the degree of bearing faults is expressed through changes in winding inductance. The article analyzed the fault mechanism of rolling bearings and established an analytical model based on the winding function method to calculate the winding inductance of bearing inner ring, outer ring, and rolling element faults according to the characteristics of different components of rolling bearings. A finite element model was established to calculate the winding inductance of bearing cage faults. The results indicate that the inductance of a brushless DC motor after bearing failure will be higher than the normal value and fluctuate, and its amplitude and frequency depend on the degree of bearing failure.

Key words: brushless DC motor; bearing failure; winding function method; winding inductance

0 引 言

在电机所有常见故障类型中,轴承故障发生概 率最大^[12],常规处理轴承故障的方法是发现后立即 停机,然而应用包括在航空航天领域在内的电机无 法立刻停止工作,还需要故障运行一段时间,为了 解决运行中轴承故障量化问题,通过绕组电感变化 表达轴承故障程度。

轴承故障信号的表现形式有多种,国内外研究 者已经取得了相当数量的研究成果,如:文献[3-5] 将振动信号分解,利用解调技术初步判断是否出现 故障,然后用现代信号处理的方法判断轴承故障的 类别与原因; 文献[6] 在电机外部安装磁传感器, 通过采集外部磁场的信号从而进行轴承故障诊断; 文献[7] 对轴承温度进行预测, 计算预测值与正常 工作数据的残差, 通过设置阈值实现对轴承故障的 诊断; 文献[8] 采用音频分析的诊断方法, 运用电 子听诊器和录音设备进行记录, 然后进行频谱分析 提取轴承故障特征; 文献[9-10] 以定子电流分析诊 断为基础, 采集故障定子电流数据, 通过快速傅里 叶变换的频域分析提取轴承故障特征; 文献[11] 针 对恒转速状态运行的电机设计带通滤波器对转速信 号进行滤波, 从转速信号提取故障特征。以上研究 针对轴承故障的诊断进行了深入的分析和研究, 但

作者简介:黄皓然(1998),男,硕士研究生,研究方向为高品质永磁及特种电机系统。

张 博(1987),男,副教授,硕士生导师,研究方向为变压器设计。

收稿日期: 2023-03-13, 修回日期: 2023-05-11

没有分析轴承故障对电机运行、控制的影响,而电 感参数的变化会影响电机控制系统的控制精度,因 此对轴承故障时的电感进行计算是有一定应用价值 和深远意义。

本文针对轴承故障工况下无刷直流电机的电感 计算问题,分析了轴承不同部件故障的特点,提出 了结合气隙变化模型的绕组函数法,以及运用 Ansys 软件建立转子倾转有限元模型,分别计算出轴承不 同部件故障时电机的绕组电感。结果表征了不同轴 承故障程度与绕组电感的映射关系,为后续研究提 供帮助。

1 轴承故障机理分析

1.1 轴承的结构

滚动轴承由外圈、内圈、滚动体和保持架四部 分组成,轴承结构如图1所示。根据轴承的结构组 成可以把轴承故障分为外圈故障、内圈故障、滚动 体故障和保持架故障。轴承故障的形式一般归为单 点和多点,单点故障发生的概率更高,且多点故障 是在单点故障基础之上发展的,一般在发现单点故 障后一段时间内就需要更换轴承,因此,本文针对 滚动轴承单点故障进行分析研究。

图1 滚动轴承单点故障

1.2 轴承不同结构故障分析

轴承外圈、内圈故障下滚动体会周期性地接触 故障点,如图2所示,假设故障点处深度为δ,长度 为 Df。滚动体通过故障的过程分为进入和离开两个 阶段:当滚动体进入故障点时,该滚动体会向下偏 移,偏移量为δ,轴承间隙增大;当滚动体驶出故障 点时,轴承间隙恢复正常工作的大小。显然,在故 障长度 Df 相同的情况下,轴承内圈故障滚动体通过 故障点的频率大于轴承外圈故障。

滚动体故障会较为复杂,轴承工作时,滚动体 除了带着保持架公转,自身也在发生自转。如图 3 所示,假设轴承运行期间滚动体不发生滑移,运动

方向上保持不变,滚动体每自转一个周期,故障点 与轴承外圈、内圈各接触一次,轴承间隙、旋转中 心发生周期性地改变,轴承故障频率取决于滚动体 的公转周期。

图 3 滚动体故障局部放大

保持架起均匀分布滚动体的作用,根据轴承动 力学模型,两个滚动体之间的保持架可等效为阻尼 弹簧系统。因此,保持架正常时两端滚动体受力如 图 4(a)所示。保持架故障时两端滚动体受力如图 4 (b)所示,导致轴承运行期间内圈将向故障处偏移, 偏移量大小为µ,结果如图 4(c)所示,轴承将产生 持续性地偏心。

(a) 正常滚动体受力 (b) 保持架故障滚动体受力 (c) 轴承偏心 图 4 保持架故障分析

1.3 轴承故障对电机电感的影响

轴承不同部位故障对电机转子的影响各不相同, 但是电机气隙都发生了变化。

磁路中磁导公式为

$$\Lambda = \frac{\mu S}{g} \tag{1}$$

式中, Λ 表示磁路磁导; μ 表示磁导率;S表示等效 磁路面积;g表示气隙长度。

导电线圈所匝链的磁通量为

$$\psi = N^2 \Lambda I \tag{2}$$

式中, ψ 表示励磁磁链; N 表示线圈匝数; I 表示线 圈电流。

导电线圈的电感为

$$L = \frac{\psi}{I} = N^2 \Lambda \tag{3}$$

式中, L 表示电感。

从式(1)~式(3)分析可知,当无刷直流电机轴

承发生故障时,定转子间气隙长度发生变化,气隙 磁导发生改变,造成定子绕组的磁链变化,进而定 子绕组电感值也存在变化。因此通过观察定子绕组 电感值变化,可以获取轴承故障的状态。

为了便于分析做出以下假设:

1)电机轴承外圈、内圈、滚动体故障工况下, 电机绕组三相自感相同;

2)轴承故障在载荷区与非载荷区对转子产生的 偏移量相同。

2 无刷直流电机的电感解析

绕组函数法^[12-13]可以用来分析无刷直流电机的 自感与互感参数,其计算方法为

$$L_{ij} = \frac{\mu_0 r l}{g} \int_0^{2\pi} n_i(\theta) N_j(\theta) \,\mathrm{d}\theta \tag{4}$$

式中, L_{ij} 表示 *i* 相与 *j* 相间的互感; μ_0 表示真空的磁 导率,为4 π ×10⁻⁷ H/m;*l* 表示铁心的有效长度;*r* 表示定子内圆半径; $n_i(\theta)$ 表示 *i* 相绕组匝数函数的 空间分布; $N_j(\theta)$ 表示 *j* 相绕组绕组函数的空间分 布, θ 表示电机圆周方向的机械角度。

本文电机为分数槽集中绕组无刷直流电机,采 用双层结构,其绕组总电感包括电枢反应电感与漏 电感。由文献[14]可知,对于 $Z_s = 2p + 2$ 的电机, 将绕组空间关系经过代入式(4)可得电枢反应电感 L_m 统一表达式为

$$L_{\rm ms} = \frac{\mu_0 r l}{g} \left(\int_0^{2\pi r_{\rm s}} N^2 \mathrm{d}\theta \right) 2pq = \frac{2\pi}{3} \frac{\mu_0 r l}{g} N^2 \qquad (5)$$

式中, Z_s 表示定子槽数; p 表示极对数; q 表示每极 每相槽数。经上式用绕组函数法计算的电枢反应电 感包含了基波磁动势对应的电枢反应电感,同时也 包含了磁动势谐波产生的谐波电感。

漏电感包括槽漏电感和端部漏电感,分数槽集 中绕组端部极短,端部漏电感可以忽略不计,总漏 感等于槽漏感,计算表达式为^[15]

$$L_{\sigma} = L_{\rm h} = N^2 l \mu_0 \left(\frac{h_s}{3W_s} + \frac{h_0}{b_0} \right) \tag{6}$$

式中, h_s 表示槽深; W_s 表示槽宽; h_0 表示槽口高; b_0 表示槽口宽, L_σ 表示电机漏电感。

无刷直流电机绕组自感表达式为

$$L_{\rm AA} = L_{\rm BB} = L_{\rm CC} = L_{\rm ms} + L_{\sigma} \tag{7}$$

)

式中, L_{AA}、L_{BB}、L_{CC}分别表示电机 A、B、C 相自感。

由文献[14,16]可知,对于单元电机定子槽数 为偶数的分数槽集中绕组无刷直流电机而言,电机 任意两相互感 L_m 为

$$L_{\rm m} = 0 \tag{8}$$

3 轴承故障时无刷直流电机的电感 解析

3.1 轴承故障气隙长度

电机轴承内圈、外圈、滚动体发生单点故障时, 定转子间气隙发生周期性变化,可以用狄拉克函数 $\delta(t - k/f_c)$ 表达为^[17]

$$g(\theta,t) = g[1 - e_0 \cos(\theta + \psi(t))] \sum_{k=-\infty}^{+\infty} \delta(t - \frac{k}{f_c})]$$
(9)

式中, e_0 表示某部位故障时的电机转子的相对偏心 率; f_e 表示轴承故障部位特征频率; $\psi(t)$ 表示不同 部位故障时引入不同的故障角

$$\psi(t) = \begin{cases} 0 & \text{外圈故障} \\ \omega_{r}t & \text{内圈故障} \\ \omega_{\text{cage}}t & 滚动体故障 \end{cases}$$
(10)

式中, ω_r 表示电机转子旋转对应的角频率; ω_{eage} 表示轴承保持架旋转对应的角频率。

气隙长度的倒数乘磁导率就得到了轴承故障时 电机的气隙磁导,由于 $e_0 \ll 1$, $\cos\theta \ll 1$,将其化简 后有

$$\Lambda(\theta,t) = \frac{\mu_0}{g} \left[1 + e_0 \cos(\theta + \psi(t)) \sum_{k=-\infty}^{+\infty} \delta(t - \frac{k}{f_c})\right]$$
(11)

当电机轴承发生单点故障时,根据故障发生位 置的不同,可以通过公式计算出相应的故障频率, 具体的故障对应频率如^[18]:

$$f_{\rm o} = \frac{N_{\rm a}}{2} \cdot f_{\rm r} \left(1 - \frac{D_{\rm b}}{D_{\rm c}} \cos(\beta) \right)$$
(12)

$$f_{i} = \frac{N_{a}}{2} \cdot f_{r} \left(1 + \frac{D_{b}}{D_{c}} \cos(\beta) \right)$$
(13)

$$f_{\rm b} = f_{\rm r} \frac{D_{\rm c}}{D_{\rm b}} \left[1 - \left(\frac{D_{\rm b}}{D_{\rm c}} \cos(\beta) \right)^2 \right]$$
(14)

$$f_{\text{cage}} = \frac{f_{\text{r}}}{2} \left(1 - \frac{D_{\text{b}}}{D_{\text{c}}} \cos(\beta) \right)$$
(15)

式中, N_a 表示轴承滚动体数量; D_b 表示轴承滚动体 直径; D_c 表示轴承节圆直径; β 表示轴承滚动体和 轨道之间的接触角; f_r 表示电机转子频率; f_o 、 f_i 、 f_b 、 f_{eage} 分别表示轴承外圈、内圈、滚动体、保持架 故障特征频率。

3.2 轴承外圈故障时的电感

当研究轴承外圈故障时, $\psi(t) = 0$, $f_c = f_o$, 将

此条件代入式(11):

$$\Lambda(\theta,t) = \frac{\mu_0}{g} \left[1 + e_0 \cos(\theta) \sum_{k=-\infty}^{+\infty} \delta(t - \frac{k}{f_0}) \right] \quad (16)$$

将式(16)代入式(7),并用傅里叶级数将狄拉克函数展开,取 k 为1,得到轴承外圈故障时的绕组电感为

$$L_{\rm AA} = L_{\rm BB} = L_{\rm CC} = \frac{2\pi}{3} \frac{\mu_0 r l}{g_0} N^2 \left[1 + \frac{1}{2} e_0 f_0 + e_0 f_0 \cos(\omega_0 t) \right] + L_{\sigma}$$
(17)

3.3 轴承内圈故障时的电感

当研究轴承内圈故障时, $\psi(t) = \omega_r t$, $f_e = f_i$,将此条件代入式(11)有

$$\Lambda(\theta,t) = \frac{\mu_0}{g} \left[1 + e_0 \cos(\theta + \omega_r t) \sum_{k=-\infty}^{+\infty} \delta(t - \frac{k}{f_i}) \right]$$
(18)

(20)

(19)

*k*为1,再加上式(6)漏电感,得到轴承内圈故障时

 $L_{\rm AA} = L_{\rm BB} = L_{\rm CC} = \frac{2\pi}{3} \frac{\mu_0 r l}{g} N^2 \left\{ 1 + e_0 f_i \left[0.5\cos(\omega_{\rm r}t) + \cos(\omega_{\rm r}t)\cos\omega_{\rm i}t - 0.13\sin(\omega_{\rm r}t) - 0.26\sin(\omega_{\rm r}t)\cos(\omega_{\rm i}t) \right] \right\} + L_{\sigma} f_{\rm AA} = L_{\rm BB} = L_{\rm CC} = \frac{2\pi}{3} \frac{\mu_0 r l}{g} N^2 \left\{ 1 + e_0 f_i \left[0.5\cos(\omega_{\rm r}t) + \cos(\omega_{\rm r}t)\cos\omega_{\rm i}t - 0.13\sin(\omega_{\rm r}t) - 0.26\sin(\omega_{\rm r}t)\cos(\omega_{\rm i}t) \right] \right\} + L_{\sigma} f_{\rm AA} = L_{\rm BB} = L_{\rm CC} = \frac{2\pi}{3} \frac{\mu_0 r l}{g} N^2 \left\{ 1 + e_0 f_i \left[0.5\cos(\omega_{\rm r}t) + \cos(\omega_{\rm r}t)\cos\omega_{\rm i}t - 0.13\sin(\omega_{\rm r}t) - 0.26\sin(\omega_{\rm r}t)\cos(\omega_{\rm i}t) \right] \right\} + L_{\sigma} f_{\rm AA} = L_{\rm BB} = L_{\rm CC} = \frac{2\pi}{3} \frac{\mu_0 r l}{g} N^2 \left\{ 1 + e_0 f_i \left[0.5\cos(\omega_{\rm r}t) + \cos(\omega_{\rm r}t)\cos\omega_{\rm i}t - 0.13\sin(\omega_{\rm r}t) - 0.26\sin(\omega_{\rm r}t)\cos(\omega_{\rm i}t) \right] \right\}$

3.4 轴承滚动体故障时的电感

当研究轴承滚动体故障时, $\psi(t) = \omega_{caget}$, $f_c =$

$$L_{AA} = L_{BB} = L_{CC} = \frac{2\pi}{3} \frac{\mu_0 r l}{g} N^2 \{ 1 + e_0 f_b [0.5 \cos(\omega_{cage} t) + \cos(\omega_{cage} t) \cos\omega_b t - 0.13 \sin(\omega_{cage} t) - 0.26 \sin(\omega_{cage} t) \cos(\omega_b t)] \} + L_o$$
(21)

3.5 轴承保持架故障时的电感

通过前文分析,保持架故障将导致轴承持续性 偏心,在另一端轴承正常的情况下,电机转子发生 了倾转,其倾转角度为

$$\alpha = \arctan\left(\delta/\frac{1}{2}\right) \tag{22}$$

式中, α 表示转子倾转角度; δ 表示转子偏移距离。

保持架故障电机有限元模型如图 5 所示,通过 调整倾转角可以计算不同故障程度时的绕组电感。

图 5 保持架故障电机模型

4 案例分析

4.1 无刷直流电机的电感计算实例

本文以一台 550 W 分数槽集中绕组无刷直流电 机为例,部分电机参数如表1 所示。 f_b,其推导过程和轴承内圈故障相同,根据式(20) 写出轴承滚动体故障时的绕组电感为

表1 电机的主要参数

参数	参数值	参数	参数值
额定功率/W	550	额定转速/(r/min)	1500
额定电压/V	220	极对数 p	5
定子外径/mm	120	定子内径 r/mm	75
铁心长度 l/mm	30	气隙长度 g/mm	2
定子槽数 Z_s	12	每槽导体数	174
槽口高 h_0 /mm	1.2	槽口宽 b_0 /mm	2.5
槽深 h _s /mm	12	槽宽 W _s /mm	7

将上述数据代入式(7),可得无刷直流电机的 三相自感为

 $L_{\rm AA} = L_{\rm BB} = L_{\rm CC} = 11.2 + 1.1 = 12.3$ (23)

在 Ansys 软件中,利用有限元法计算三相绕组 电感后结果如图 6 所示,与式(23)求出的电感值相 差在 5% 以内,验证了绕组函数法求电感的准确性。

在有限元计算中,轴承故障主要体现在气隙变 化后的磁密不同。如图7所示,当转子偏心后,气 隙最小处定子槽口附近磁密增大,气隙长度最大处 定子槽口附近磁密减小,进而导致绕组电感发生 变化。

(b) 偏心后电机磁密云图

图 7 无刷直流电机气隙变化前后磁密变化

4.2 轴承故障时无刷直流电机的电感计算实例

拟选用国产 6206 轴承,具体参数如表 2 所示。

	表 2	轴承参数	
参数	参数值	参数	参数值
轴承外径/mm	62	滚动体直径 $D_{\rm b}/{ m mm}$	9.6
轴承内径/mm	30	节圆直径 D_{c}/mm	46
滚动体数 N_a	9	接触角β	0

已知电机的转速 1500 r/min,则 *f*_r为 25 Hz,将 上表参数代入式(12)~式(15)可以求得 *f*_o为 89 Hz、 *f*_i为 139 Hz、*f*_b为 114 Hz、*f*_{case}为 10 Hz。 当某一个滚动体处于故障位置时,其余滚动体 将承受更多的负荷,转子的实际偏移并不等于滚动 体在故障点的位移,而是与轴承的载荷大小、材料 硬度等方面有关。假设转子因轴承外圈、内圈、滚 动体故障产生的实际径向位移为1 μm,则转子的相 对偏心率 e₀ 为

$$e_0 = \frac{\delta}{g_0} \times 100\% = \frac{1 \times 10^{-3}}{2} \times 100\% = 0.05\%$$
 (24)

将上述各参数代入式(17),得到轴承外圈故障 下的绕组自感为

L_{AA} = L_{BB} = L_{CC} = 12.5 + 0.5cos(560t) (25) 将上述各参数代入式(20),得到轴承内圈故障 下的绕组自感为

$$\begin{split} L_{\text{AA}} = & L_{\text{BB}} = L_{\text{CC}} = 12.3 + 0.39\cos(157t) + \\ & 0.78\cos(157t)\cos(870t) - 0.1\sin(157t) - \\ & 0.2\sin(157t)\cos(870t) \end{split}$$

(26)

将上述各参数代入式(21),得到轴承滚动体故 障下的绕组自感为

$$L_{AA} = L_{BB} = L_{CC} = 12.3 + 0.32\cos(63t) + 0.64\cos(63t)\cos(722t) - 0.08\sin(63t) - 0$$

0. $16\sin(63t)\cos(722t)$

(27)

保持架故障由故障保持架两端滚动体偏移产生的,远大于前三种故障单个滚动体偏移造成的影响,因此假设转子受保持架故障所产生的实际径向位移为0.5 mm,可求得转子倾转角度 α 为2 度,计算后 三相电感如图 8 所示。

图 8 保持架故障时的电感

保持架故障三相电感值较正常电感值约大 0.3 mH。引起电机电感数值异常变大的原因还有静偏心、动偏心等,借助 Matlab 进行曲线拟合具体描述 轴承故障下的电感变化,其表达式为

$$L_{AA} = 12.65 + 0.15\cos(1580t) + 0.008\sin(1580t) - 0.05\cos(3160t) - 0.002\sin(3160t)$$
(28)

 $L_{\rm BB} = 12.68 - 0.09\cos(1560t) - 0.14\sin(1560t) + 0.02\cos(3120t) - 0.04\sin(3120t)$ (29)

 $L_{\rm CC} = 12.68 - 0.12\cos(1580t) + 0.1\sin(1580t) + 0.007\cos(3160t) + 0.05\sin(3160t)$ (30)

由案例结果可知,当滚动轴承发生故障时,电 机定子绕组电感发生周期性变化,其表达式由常数 和正余弦公式组成,其具体变化与故障类型有关。 当故障参数相同时,内滚道故障时的绕组电感幅值 大于外滚道故障,滚动体故障时的绕组电感大小与 电机转速成正比。区别前三种故障,轴承保持架故 障电感接近于常数,不随时间发生变化,其幅值只 取决于转子径向位移。

5 结 语

本文针对轴承故障工况下的无刷直流电机绕组 电感计算问题,提出了轴承不同部件故障的计算模 型并给出了案例分析。计算结果表明轴承故障导致 绕组电感幅值增大,并且外圈、内圈、滚动体故障 时的电感正比于转子的径向位移和故障部位特征频 率,保持架故障只与转子径向位移相关,对轴承故 障下的电机容错控制有理论支撑作用。

参考文献

- [1] 蓝雄,刘胜永. 轴承故障稀疏编码特征提取与多分类 SVM 识别[J]. 机械设计与制造,2020(10):182-186.
- [2] LAU E C C, NGAN H W. Detection of Motor Bearing Outer Raceway Defect by Wavelet Packet Transformed Motor Current Signature Analysis [J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(10): 2683-2690.
- [3] 康守强,胡明武,王玉静,等.基于特征迁移学习的变工况下 滚动轴承故障诊断方法[J].中国电机工程学报,2019,39
 (03):764-772,955.
- [4] 沙云东,赵宇,栾孝驰,等. 基于多参数信息融合筛选的滚动 轴承振动信号特征提取与表征方法[J/OL]. 推进技术: 1-14 [2023-03-09].
- [5] 齐咏生,单成成,高胜利,等. 基于 AEWT-KELM 的风电机组 轴承故障诊断策略[J].太阳能学报,2022,43(08): 281-291.

- [6] Frosini L, Harlisca C, Szabó L. Induction Machine Bearing Fault Detection by Means of Statistical Processing of the Stray Flux Measurement[J]. IEEE Transactions on Industrial Electronics, 2014, 62(3): 1846-1854.
- [7] 万安平,龚志鹏,张银龙,等. 基于 XGBoost-KDE 的风机主轴
 承温度预测与故障预警方法[J]. 热力发电,2022,51(12):
 164-171.
- [8] 张泱泱,张沛全.基于音频分析的电机轴承异音故障诊断研究[J]. 计量与测试技术, 2022, 49(07): 46-49, 53.
- [9] 宋向金,王卓,胡静涛,等. Hilbert 解调制方法诊断异步电机 轴承故障[J]. 电工技术学报, 2018, 33(21): 4941-4948.
- [10] 卞皓,王晓琳,邓智泉.基于定子电流的无刷直流电机轴承故
 障诊断[J].南京航空航天大学学报,2020,52(02):
 224-231.
- [11] Ren B, Yang M, Chai N, et al. Fault Diagnosis of Motor Bearing Based on Speed Signal Kurtosis Spectrum Analysis [C]. 22nd International Conference on Electrical Machines and Systems, IEEE, 2019: 1-6.
- [12] 刘凯,张炳义,冯桂宏.基于非对称绕组函数法永磁同步电机 偏心电感参数的研究[J].电工技术学报,2020,35(S2): 387-394,431.
- [13] Novotny D W, Lipo T A. Vector Control and Dynamics of AC Drives[M]. Oxford University Press, 1996.
- [14] 王璐, 许雪峰. 分数槽集中绕组表贴式永磁同步电机电感参数 研究[J]. 微特电机, 2020, 48(12): 19-22, 26.
- [15] Lipo T A. Introduction to AC Machine Design [M]. John Wiley and Sons, 2017.
- [16] 佟文明,吴胜男,安忠良.基于绕组函数法的分数槽集中绕组 永磁同步电机电感参数研究[J].电工技术学报,2015,30 (13):150-157.
- [17] choen R R, Habetler T G, Kamran F, et al. Motor Bearing Damage Detection Using Stator Current Monitoring[J]. IEEE Transactions on Industry Applications, 1995, 31(6): 1274-1279.
- [18] Shao S, Yan R, Lu Y, et al. DCNN-based Multi-signal Induction Motor Fault Diagnosis [J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69(6): 2658-2669.

e Bese	353535 3	45°534	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	\$
2°2				邮发代号: 52-92
52 S2		((微电机)(氡利)	订价:8元/期
23	人厅	10 #10	とませうだいかいしゃりには、 チャリテンプかりて、 金砂	年价:96元/年
2525	全牛	12 别	,误看可到当地邮局订阅,本刊小可破订、零购。	编辑部邮购(含快递费): 300 元/年
2525	欢	迎打	殳稿!欢迎订阅!欢迎刊登广告!	e e
2525	国内刊	刊号:	CN61 – 1126/TM	国际刊号: ISSN 1001 - 6848
re	邮	箱:	micromotors @ vip. sina. com	2 2
52°52	地	址:	高新区上林苑四路 36 号(710117)	电话: 029-84276641
lese	5252525	2929A	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	69 <i>696969696969696969696969696969696</i>

无磁轭辐射环双定子电机磁场分析及转矩计算

孙贤备,陈进华,陈思鲁,陈庆盈,张 驰 (中国科学院宁波材料技术与工程研究所,浙江 宁波 315201)

摘 要:提出一种双定子永磁同步电机,转子采用辐射环结构,无转子磁轭,可减小转子转动惯量和空间占比,增大内定子空间,从而提高电机转矩密度。首先,建立辐射环结构双定子电机和常规的双定子电机的等效空载磁路模型,通过磁路法进行分析计算,得到两种结构双定子电机永磁体工作点的磁通,从而计算其反电势和转矩常数。其次,建立两种双定子结构有限元仿真模型,通过仿真得到其反电势波形及转矩常数,验证磁路法的正确性,仿真结果表明,采用无磁轭辐射环结构,电机转矩常数比常规的双定子电机大13.7%。最后,研制无磁轭辐射环结构双定子电机,并进行实验,实验得出的转矩常数与有限元仿真最大误差为3.84%。
 关键词:双定子;辐射环;转矩密度;无磁轭
 中图分类号:TM351;TM341
 文載标志码:A
 文章编号:1001-6848(2023)10-0007-06

The Magnetic Field Analysis and Torque Calculation of a Dual-stator Motor With a Yokeless Radial Ring

 SUN Xianbei, CHEN Jinhua, CHEN Silu, CHEN Qingying, ZHANG Chi
 (1. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo Zhejiang 315201, China)

Abstract: A dual-stator permanent magnet synchronous motor was proposed. The rotor adopted a radial ring structure, and there is no rotor yoke, which can reduce the rotor inertia and space ratio, increase the inner stator space, and thus increase the torque density of the motor. First, the equivalent no-load magnetic circuit model of the radial ring structure double-stator motor and the conventional double-stator motor was established, and the magnetic flux of the permanent magnet working point of the two-structure double-stator motor was obtained through the analysis and calculation of the magnetic circuit method, thus the back EMF and torque constant were calculated. Secondly, two finite element simulation models of double-stator structures were established, and their back EMF waveforms and torque constants were obtained through simulation to verify the correctness of the magnetic circuit method. The simulation results show that the torque constant of the motor which adopted a yokeless radial ring structure is 13.7% larger than that of the conventional dual-stator motor. Finally, a double-stator motor with a yokeless radial ring structure was developed and experiments were carried out. The maximum error between the torque constant obtained from the experiment and the finite element simulation was 3.84%.

Key words: dual-stator ; radial ring; torque density; yokeless

基金项目:浙江省科技计划项目 - 领雁计划(2023C01179);国家自然科学基金(U20A20282),(U1913214);宁波市科技创新 2025 重大专项(2022Z036),(2020Z069)。

作者简介:孙贤备(1987),男,硕士,高级工程师,研究方向为机器人关节电机及高空无人机电机等设计及制造。

陈进华(1985),男,博士,正高级工程师,研究方向为电机及其控制、电机优化设计。

陈思鲁(1982),男,博士,研究员,研究方向为高速高精运动控制技术及机器人自动化技术等。

陈庆盈(1976),男,博士,研究员,研究方向为机电一体化系统、机器人结构与控制技术、水下运载工具研发技 术等。

张 驰(1978),男,博士,研究员,研究方向为精密运动控制技术、永磁电机设计及控制、微纳定位装置和宏微 操作机器人、先进机器人及智能装备制造技术等。

收稿日期: 2023-03-29, 修回日期: 2023-05-09

0 引 言

机器人关节用驱动电机要求电机体积小、重量 轻、转动惯量小,动态响应高。为了进一步增加转矩 -体积比,双定子电机成为机器人关节用驱动电机的 研究热点。常规的双定子永磁同步电机通常由内外定 子,中间杯形转子结构组成。杯形转子内外两侧粘贴 永磁体,分别与内外定子形成双气隙磁场。这种双层 气隙的电机结构可以充分利用电机内部空间,提高单 位体积的电机转矩,具有广阔的研究前景^[18]。

文献[9]借鉴单层气隙永磁电机裂比优化设计 思路^[10-13],研究了双定子电机内定子外径与外定子 外径的列比在不同磁负载条件下对功率特性的影响, 获得了不同负载下的最优裂比,并通过有限元方法 和样机实验验证了分析方法的正确性。

文献[14]着重研究了双定子电机内外定子空载、 外定子负载内定子空载、外定子空载内定子负载和 内外定子负载4种情况下,定子绕组电枢反应对内 外气隙磁场的影响进行了分析,通过建立等效磁路, 推导出了气隙磁密的解析表达式。

本文的研究的双定子电机转子采用辐射环结构, 无转子磁轭,比常规的双定子转子具有更轻的质量, 更小的转动惯量,更小的转子占空比。首先对无磁 轭辐射环双定子结构和常规的双定子结构进行等效 磁路法分析,计算其反电势和转矩常数,对两种双 定子结构进行比较。再利用有限元法建模仿真,对 磁路法计算进行验证。最后,通过样机实验,验证 磁路法计算和有限元分析的正确性。

1 磁路法计算

1.1 双定子结构特点

常规的双定子电机由内外定子、内外表贴磁钢、 转子磁轭组成。根据转子磁路结构的不同,双定子 磁路可分为串联磁路和并联磁路两种。串联磁路转 子轭部磁密比并联磁路低,因此转子磁轭可以做得 更薄,性能上比并联磁路更好。常规串联磁路的双 定子结构如图1所示。

图1 常规的串联磁路双定子结构

本文研究的无磁轭辐射环转子结构的双定子电 机由内外定子及中间辐射环转子组成,转子磁路为 串联磁路,如图2所示。相比于常规的双定子电机, 采用辐射环转子结构的双定子电机节省了磁轭与内 磁钢,转子质量更轻,转动惯量更小,电机快速响 应能力更好。转子所占空间比例更小,相应的内定 子绕组所占比例更大,电机输出转矩、功率密度、 效率更高。

图 2 无磁轭辐射环转子双定子结构

1.2 辐射环双定子磁路计算

无磁轭辐射环转子结构的双定子空载磁路模型 如图 3 所示。

图 3 无磁轭辐射环双定子空载磁路模型 双定子外磁路磁势之和 ΣF 为

 $\Sigma F = F_{og1} + F_{ot1} + F_{oj1} + F_{ig1} + F_{ij1}$ (1) 式中, $F_{og1} \pi F_{ig1} \beta$ 别为外气隙和内气隙的磁势, F_{ot1} 和 $F_{it1} \beta$ 别为外定子齿磁势和内定子齿磁势, $F_{oj1} \pi$ $F_{ij1} \beta$ 别为外定子轭磁势和内定子轭磁势。

气隙磁势 F。为

$$F_{\delta} = 1.6 \cdot \delta \cdot K_{\delta} \cdot B_{\delta} \tag{2}$$

式中, δ 为气隙大小,单位 mm。 B_s 为气隙磁密大小,单位 T。 K_s 为气隙系数。

$$K_{\delta} = \frac{t}{t - \frac{\gamma^2 \cdot \delta}{5 + \gamma}} \tag{3}$$

$$\gamma = \frac{b_0}{\delta} \tag{4}$$

式中, t 为定子齿距, 单位 mm。 b_0 为定子槽口宽度, 单位 mm。

采用磁路法计算,流经定子齿、定子轭、气隙 等主磁路的磁通保持不变。根据主磁路各部分磁通 不变原理,可得到定子齿部磁密 *B*,及轭部磁密 *B*;:

$$B_{t} = \frac{B_{\delta} \cdot t}{K_{fe} \cdot b_{t}} \tag{5}$$

$$B_{j} = \frac{B_{\delta} \cdot \tau \cdot \alpha}{2 \cdot K_{fe} \cdot h_{j}} \tag{6}$$

式中, K_a为定子铁心叠压系数。b_i为定子齿宽, 单 $位 \, mm_{\circ} \tau$ 为定子极距,单位 $mm_{\circ} \alpha$ 为永磁体极弧系 数。 h_i 为定子轭宽,单位 mm。

定子铁心由 0.2 mm 厚的硅钢片 20WTG1500 叠 压而成,其BH曲线为非线性,如图4所示。

图 4 硅钢片 20WTG1500 BH 曲线

定子齿部磁场强度 H, 和定子轭部磁场强度 H, 可分别由定子齿部磁密 B, 及轭部磁密 B, 根据图 4 采 用线性插值函数得到。

定子齿部磁势 F, 及定子轭部磁势 F, 可表示为

$$F_t = 2 \cdot H_t \cdot h_t \cdot 10^{-3} \tag{7}$$

$$F_j = H_j \cdot L_j \cdot 10^{-3} \tag{8}$$

式中,h,为定子齿部磁路长度,单位 mm。L,为定子 轭部磁路长度,单位mm。

永磁体外磁路的空载特性曲线在 $\Phi - F$ 平面上 可表示为

$$\varphi_{m1} = \sigma \cdot B_{\delta} \cdot \tau \cdot \alpha \cdot L_{fe} \cdot 10^{-6} \tag{9}$$

 $\sum F = F_{og1} + F_{ot1} + F_{oj1} + F_{ig1} + F_{it1} + F_{ij1}$ (10)式中, φ_{m1} 为永磁体空载状态的磁通,单位 Wb。 σ 为漏磁系数。 L_{ℓ} 定子铁心长度,单位 mm。

永磁体的退磁曲线由 B - F 平面换算到 $\Phi - F$ 平 面可由下式完成:

$$\Phi_m = B_r \cdot \frac{\pi \cdot D_m \cdot \alpha \cdot L_m}{2 \cdot p} \cdot 10^{-6}$$
(11)

$$F_m = 2 \cdot H_c \cdot h_m \tag{12}$$

式中, B, 为永磁体剩磁, 单位 T。H, 为永磁体矫顽 力,单位 $kA/m_{o} D_{m}$ 为辐射环内外圆平均直径,单 位 $\operatorname{mm}_{\circ} L_{\mathrm{m}}$ 为永磁体轴向长度,单位 $\operatorname{mm}_{\circ} p$ 为电机 极对数。

根据永磁体工作图上的空载特性曲线和磁钢退 磁曲线的交点,可得到流经磁钢的磁通,从而计算 出空载状态气隙的磁通。永磁同步电机的气隙磁场 接近正弦波,其线反电势的幅值为

 $E_{ab} = \sqrt{3} \cdot 0.\ 1047 \cdot p \cdot W_{\emptyset} \cdot k_{dp} \cdot \Phi_{\delta} \cdot n \quad (13)$ 式中, W₀ 为电枢绕组每相串联匝数。k₄₀ 为绕组系 数。 Φ_s 为空载气隙磁密,单位 T。n 为转速,单位 r/min

1.3 常规双定子磁路计算

为了同无磁轭辐射环的双定子结构比较性能. 设定常规的双定子电机磁路结构为串联, 永磁体厚 度、极弧系数、矫顽力和辐射环一样,外定子参数 和辐射环双定子一致。转子磁轭厚度尽量取薄,考 虑到加工的机械性能,转子磁轭厚度定为1 mm。

常规的双定子结构空载磁路模型如图5所示。

图 5 常规的双定子空载磁路模型

其永磁体外磁路的空载特性曲线在 $\Phi - F$ 平面 上可表示为

$$\varphi_{m2} = \sigma \cdot B_{\delta} \cdot \tau \cdot \alpha \cdot L_{fe} \cdot 10^{-6}$$
(14)

 $\sum F = F_{ae2} + F_{al2} + F_{al2} + F_{ie2} + F_{ie2} + F_{il2} + F_{il2}$ 式中, F_{og2} 和 F_{ig2} 分别为外气隙和内气隙的磁势, F_{og2} 和 Fin 分别为外定子齿磁势和内定子齿磁势, Fin 和 F_w 分别为外定子轭磁势和内定子轭磁势, F_r 为转子 轭部磁势。

永磁体的退磁曲线由平面换算到平面可由下式 完成:

$$\Phi_m = B_r \cdot \frac{\pi \cdot (D_{mo} + D_{mi}) \cdot \alpha \cdot L_m}{2 \cdot p} \cdot 10^{-6} \quad (16)$$
$$F_m = 4 \cdot H_c \cdot h_m \quad (17)$$

$$= 4 \cdot H_c \cdot h_m \tag{17}$$

式中, D_m和 D_m分别为外永磁体和内永磁体的内外 圆平均直径,单位 mm。

1.4 两种结构双定子性能参数

无磁轭辐射环双定子结构和常规的双定子结构 永磁体工作图如图6所示。

永磁体外磁路空载特性曲线和永磁体去磁曲线 的交点即为永磁体工作点。辐射环结构的双定子永 磁体工作点磁通量为 3.657 × 10⁻⁵ Wb, 常规的双定

子电机永磁体工作点磁通量为 3.864×10⁻⁵Wb。采 用辐射环结构的双定子电机由于永磁体 NS 极间无导 磁轭及永磁体用量少,因此永磁体工作点的磁通量 比常规的双定子电机要小 5.7%。

两种结构的磁路法计算结果如表1所示。 表1 两种结构电机性能参数

参数	辐射环双定子	常规的双定子
外定子外径/mm	52	52
外定子内径/mm	36	36
内定子外径/mm	31.4	26
内定子内径/mm	16	16
轴向长度/mm	10	10
内外定子极数/槽数	20/18	20/18
内/外定子每相串联匝数	24/72	6/72
内/外气隙磁密/T	0.700/0.729	0. 740/0. 853
内/外定子反电势 系数/(V/(kr/min))	0. 922/3. 041	0. 223/3. 213
内/外定子转矩常数 /(N・m/A)	0. 0152/0. 0503	0. 0037/0. 0531

双定子电机转矩主要来自于外定子,辐射环结构双定子外定子气隙磁密、外定子反电势系数及转矩常数均比常规的双定子电机略小。但是采用辐射环结构,转子无磁轭,节省了转子空间,内定子的空间更大,内定子电枢绕组每相串联绕线匝数是常规双定子的4倍,内定子产生的转矩比常规的双定子电机大。内外定子同时串联供电时,辐射环转子结构的双定子转矩常数(0.0655 N·m/A)比常规的双定子结构(0.0568 N·m/A)大15.3%。

2 有限元计算

利用 ansoft maxwell 有限元软件对转子辐射环结构(如图7所示)和常规的双定子结构进行建模仿真(如图8所示)。两种双定子电机内外径和轴向长度相同,外定子参数完全相同,采用辐射环结构转子空间更小,内定子槽面积更大,可绕更多匝数。

图 7 转子辐射环双定子仿真模型

图 8 常规双定子仿真模型

图 9 和图 10 显示,采用辐射环结构的外定子齿 磁密比常规的双定子结构低。辐射环结构双定子电 机外定子齿磁密最大值 1.43 T,常规的双定子电机 外定子磁磁密最大值 1.53 T。

图 10 常规的双定子磁密云图

图 11 为两种双定子电机以转速 3000 r/min 空载 运行得到的内外定子相反电势图。转子采用辐射环 结构,利用充磁线圈进行斜极充磁,其反电势波形 更加接近正弦状。电机采用"Y"型接法,其线反电 势如图 12 所示。从图 12 可看出双定子电机外定子 线反电势远大于内定子线反电势,其中辐射环结构 的双定子电机外定子反电势比常规的双定子电机略 小,但内定子反电势比常规的双定子大很多。这是 由于辐射环结构的主磁路磁通比常规的双定子略小, 但内定子绕组匝数是常规双定子的4倍。

辐射环结构的双定子内定子线反电势幅值为4.02 V, 外定子线反电势幅值为12.68 V。内外定子线反电势 常数分别为0.948 V/(kr/min)和2.989 V/(kr/min)。

常规的双定子电机内定子线反电势幅值为0.903 V, 外定子线反电势幅值为13.82 V。内外定子线反电势 常数分别为0.213 V/(kr/min)和3.258 V/(kr/min)。

两种结构双定子线反电势常数有限元计算的结 果和磁路法分析计算的结果接近,验证了磁路法的 正确性。

图 13 两种结构双定子 T-I曲线

两种结构双定子电机以转速 3000 r/min 运行, 其T-I曲线如图 13 所示。内定子不通电,外定子 单独通电时,由于辐射环结构双定子气隙磁密比常 规的双定子小,因此相同电流产生的电磁转矩比常 规的双定子电机小。内外定子串联通电时, 电机转 矩为内外定子出力之和,辐射环结构的双定子相同 电流产生的电磁转矩比常规的双定子电机大。在额 定点0.3 N·m,内定子不通电,外定子单独通电, 辐射环结构双定子电机转矩常数为0.0492 N·m/A, 常规的双定子电机 0.0536 N·m/A, 单独外定子通 电,辐射环结构双定子电机产生的转矩比常规的双 定子电机小8.9%。内外定子同时串联通电时,辐射 环结构双定子电机转矩常数为0.0649 N·m/A、常 规的双定子电机 0.0571 N·m/A。内外定子串联通 电,辐射环结构双定子电机产生的转矩比常规的双 定子电机大13.7%。有限元计算的转矩常数结果与 磁路法计算的误差在3%以内。

3 样机与实验

本文设计并制造了一台辐射环转子结构的双定 子电机,分别测试了电机内外定子同时串联通电和 内定子通电、外定子不通电及外定子通电,内定子 不通电三种情况下的电机性能。测试的驱动器采用 的美国 Copley ACM-090-60,最大输出电流有效值为 30A。样机定转子及机壳、端盖等零部件及实验平台 如图 14 所示。

(b) 双定子电机样机

图 14 样机零部件及实验平台

电机以 3000 r/min 运行,测得相反电势波形和 仿真的相反电势波形如图 15 所示。实测相反电势波 形和仿真相反电势波形差距很小。

图 15 电机仿真和实测的相反电势波形 电机在额定电压48 V,额定转速3000 r/min下, 测得电机的 T-I 曲线如图 16 所示。

图 16 双定子电机 T-I 曲线

在额定点 0.3 N·m,辐射环结构双定子电机内 外转子串联通电时,转矩常数为 0.0625 N·m/A, 外定子通电,内定子不通电时,转矩常数为 0.0491 N·m/A,内定子通电,外定子不通电时,转矩常数 为 0.0132 N·m/A。内外定子同时串联通电时,外 定子产生的转矩是内定子的 3.66 倍。

辐射环结构双定子电机磁路法、有限元及实测的转矩常数如下表所示,三种方法得出的转矩常数 误差范围很小,最大误差 <5%。有限元与实测最大 误差为 3.84%。

表2 磁路法、有限元及实测额定点转矩常数

电机内外定子串联通电与外定子单独通电的效率曲线如图 17 所示。在转矩小于 0.4 N·m 时,内 外定子串联通电与外定子单独通电效率差别不大。 随着负载转矩的增大,内外定子串联通电的效率比 单独外定子通电的效率逐渐增大。由此可知,采用 双定子结构可提高电机过载性能。

4 结 论

为了研究无磁轭辐射环转子结构的双定子电机 性能,本文以一台常规的内外表贴磁钢的双定子电 机为参照,对两种结构的双定子电机进行了磁路法 计算与有限元建模分析,比较两种结构的双定子电 机性能。最后综合样机数据得到以下结论: (1)采用辐射环结构双定子转子所占空间比常 规的双定子电机小,转子质量更轻,转动惯量更小。

(2)采用辐射环结构的双定子电机虽然永磁体 工作点的磁通量比常规的双定子电机略小,但是辐 射环转子所占空间小,内定子空间占比大,内定子 产生转矩比常规双定子电机更大。内外定子串联供 电时,产生的转矩比常规的双定子电机大 13.7%。

参考文献

- Welburn R, Lira L. Ultra High Torque Motor System for Direct Drive Robotics [C]. In Proceedings Robots 8 Conference, Detriot, Michigan, 1984: 1963-1971.
- [2] Niu S, Chau K T, Jiang J Z, et al. Design and Control of a new Double-stator Cup-rotor Permanent-magnet Machine for Wind Power Generation[J]. IEEE Transactions on Magnetics, 2007, 43(6): 2501-2503.
- [3] Chai F, Cui S, Cheng S. Performance Analysis of Double-stator Starter Generator for the Hybrid Electric Vehicle [J]. IEEE Transactions on Magnetics, 2005, 41(1): 484-487.
- [4] Kou Baoquan, Li Liyi, Cheng Shukang. Torque Characteristics of Double-stator Hybrid Stepping Motor With Serial Magnetic Circuit Structure[C]. In Proceedings IEEE International Electric Machines and Drives Conference, 2003: 313-318.
- [5] 程树康,寇宝泉,杨世彦,等.串联磁路结构双定子混合式直接驱动电动机的转矩特性[J].中国电机工程学报,2004,24 (7):127-132.
- [6] 寇宝泉,张千帆,程树康,等. 串联磁路结构双定子混合式直接驱动电动机的定位转矩分析及抑制策略[J]. 中国电机工程学报,2005,25(8):145-150.
- [7] 刘细平,林鹤云,杨成峰.新型双定子混合励磁风力发电机三
 维有限元分析及实验研究[J].中国电机工程学报,2008,28
 (20):142-146.
- [8] Zhang D, Chau K T, Niu S X, et al. Design and Analysis of a Double-stator Cup-rotor PM Integrated Starter-generator [C]. In Proceedings IEEE Industry Applications Society Annual Conference, 2006: 20-26.
- [9] 王玉彬,程明,花为,等. 双定子永磁无刷电机裂比的分析与 优化[J]. 中国电机工程学报,2010,30(30):62-67.
- [10] Chaaban F B. Determination of the Optimum Rotor/stator Diameter Ratio of Permanent Magnet Machines [J]. Electric Power Components and System, 1994, 22(4): 521-531.
- [11] Zhu Z Q, Ng K, and Howe D. Design and Analysis of High-speed Brushless Permanent Magnet Motors [C]. In Proceedings IEE Electrical Machines and Drives, Cambridge, 1997: 381-385.
- [12] 沈建新,陈永校.永磁无刷直流电动机定子裂比的分析与优化[J].电机与控制学报,1998,2(2):80-83.
- [13] Pang Y, Zhu Z Q and Howe D. Analytical Determination of Optimal Split Ratio for Permanent Magnet Brushless Motors [J]. IEEE Electric Power Applications, 2006, 153(1): 7-13.
- [14] 陈哲,王爱元,庄石榴,等.双定子永磁同步电机电枢反应对气 隙磁场的影响[J].上海电机学院学报,2018,21(4):42-47.

高过载高响应小型双通道舵机的设计

张旭杰,侯 文

(中北大学信息与通信工程学院,太原030051)

摘 要:根据某型制导炮弹高过载、高响应以及小型化的需求,本文设计了一款以直流无刷电机为控制对象,控制 策略为电流、位置、速度三闭环反馈控制系统的双通道电动舵机。确定电机定制要求并对减速机构进行设计,再通 过机械结构优化设计,提高设备的抗高过载性能。舵机以 GD32F407 为主控制器,驱动电路采用 In2136S 三相桥驱动 芯片与 MOS 管组成的全桥电路。试验结果表明,设备具有良好的转速跟随性能,角速度大于240°/s,调节时间小于 70 ms,频带宽度可达 18 Hz,加载超调量为 0.25%,稳态误差≤0.25°,满足设计要求。

关键词:双通道;高过载;电动舵机;直流无刷电机;性能测试

中图分类号: TM36 +1; TP23 文献标志码: A 文章编号: 1001-6848(2023)10-0013-07

Design of Servo Used for High Overload Highly Responsive Double-channel

ZHANG Xujie, HOU Wen

(School of Information and Communication Engineering, North University of China, Taiyuan 030051, China)

Abstract: According to the requirements of high overload, high response and miniaturization of a type of guided artillery shell, this paper designed a dual-channel electric servo with a brushless DC motor as the control object and a three-closed-loop feedback control system of current, position and speed as the control strategy. Define motor customization requirements and design the reduction mechanism, and then the mechanical structure was optimized and designed to improve the performance of the equipment against high overload. The GD32F407 was used as the main controller of the servo, and the drive circuit was a full-bridge circuit composed of Ir2136S three-phase bridge driver chip and MOS tubes. The test results show that the device has good speed following performance, the angular speed is greater than $240^{\circ}/s$, the adjustment time is less than 70 ms, the band width is up to 18 Hz, the loading overshoot is 0. 25%, and the steady-state error is $\leq 0.25^{\circ}$, which meets the design requirements.

Key words: double-channel; high overload; electric servos; DC brushless motor; performance testing

0 引 言

综合国防实力是国家立足国际的重点,各国国 防事业也在进行着激烈的角逐^[1-2]。现代战场环境日 益复杂化、多元化,对于武器的精度和射程的需求 更加严苛,需要更加智能化数字化的武器系统来应 对多变的战场环境^[34],制导炮弹应运而生。对比于 传统炮弹,制导炮弹拥有精度高、效率高等优点, 针对静止或运动中的目标都能实施精确打击。

舵机系统作为导弹命令执行机构,是导弹控制 系统不可缺少的重要组件^[5]。舵机的静、动态性能 直接影响制导炮弹的操控性、灵活性和精准度^[6]。 根据动力驱动来源可将舵机分为液压舵机、气动舵 机和电动舵机三大类^[7-9]。电动舵机以其响应速度 快、机械结构相对简单、质量体积小而被广泛应用 于导弹舵机系统中。并且相比单通道舵机控制,双 通道舵机控制在提高控制效率的基础之上,还有效 降低了系统整体对于舵机负载能力和最大转速的需 求,提升了舵机的抗高过载能力。

双通道舵机结构内部包含两对舵面和两路舵 机^[10-11]。其中,每对舵面由一个舵机控制,由舵机 控制的舵面偏转角均相同,舵机位于弹体前部。本 文以某型双通道高过载电动舵机为工程应用背景, 结合技术指标及使用要求,对舵机传动执行机构、

作者简介:张旭杰(1999),男,硕士研究生,研究方向为导弹舵机设计与调试技术。

收稿日期: 2023-03-16, 修回日期: 2023-05-21

通讯作者:侯 文(1967),男,教授,硕士生导师,研究方向为信息探测与获取、自动化测试与控制、动态测试与智能仪器。

舵翼机构和舵机控制器进行设计。舵机以 GD32F407 为主控制器,驱动电路采用 Ir2136S 三相桥驱动芯片 与 MOS 管组成的全桥电路。为满足尺寸限制,对电 路采取了小型化设计,并且引入 PID 算法改善了舵 机动态性能。最后,经 Matlab \ Simiulink 仿真探究 其性能是否满足设计要求。

1 高过载双通道舵机总设计方案

1.1 舵机控制系统功能与组成

高过载双通道电动舵机由 ARM、直流无刷电 机、减速传动机构、角位移传感器组成。

其中 ARM 作为主控制器,功能是接收弹上计算 机的控制指令,解算舵偏角的控制指令,从而控制 无刷电机的转速,驱动舵片运动,通过算法补偿舵 偏角与舵片位置负反馈的偏差,完成舵机闭环控制。 传动执行机构通过直流无刷电机的高速转动,经减 速机增距后转动舵面按照解算的控制指令进行角度 控制。角位移传感器为舵面位置测量原件,输出末 端舵面位置 AD 信号给微控制器,完成反馈闭环。 依任务书要求,舵机设计参数如表1所示。

表1 舵机设计参数

参数	参数值
控制率	正弦摆式
控制方式	PID
舵机输出扭矩 <i>T</i> _{os} /(N・m)	≥1
弯矩/(N・m)	≥1
最大舵面偏转角 δ/(°)	≥20
舵面最大角速度(空载) $\omega_{m}/(°/s)$	≥240
舵面最大角速度(额定负载) $\omega_{m}/(°/s)$	≥200
带宽ω _B /Hz	≥18
上升时间/ms	≤70
超调量/%	≤6
稳态误差/(°)	≤0.25
单次连续工作时间/min	≥10

1.2 工作原理

导弹飞行过程中, 舵机控制器接收到弹载计算 机发出的指令信号, 解算后形成舵偏指令, 驱动电 路控制电机旋转, 通过减速器带动舵翼偏转, 角位 移传感器将舵翼角位置信号实时反馈到舵机控制电 路,完成舵机闭环控制, 系统控制策略如图1所示。

图1 系统控制策略框图

无刷直流电机采用 PWM 控制方式进行调速,占 空比可调的 PWM 信号可以调节驱动电路两端的工作 电压,从而控制三相桥驱动电路电流换相的频率, 进而对无刷直流电机进行调速。

2 舵机结构设计

炮射导弹发射瞬间会给弹体带来巨大冲击,高 过载双通道舵机需要承受25000g发射过载要求,需 要充分考虑载荷方向、大小。设计通过主承力结构, 尽量减少内部执行机构、电机、控制器所承受发射 过载的量值,来保证整个舵机系统在承受大过载后 的可靠性。电动舵机抗高过载设计的关键步骤在于 对机械机构的改进。在电机、减速机构、位置传感 器设计及选型完成后,需要对设备整体的缓冲结构 和舵机硬件电路的灌封固化进行设计。

2.1 舵机负载力矩分析

舵机的负载力矩主要有惯性力矩、摩擦力矩、 和铰链力矩三个部分^[12]。将舵片和传动机构上产生 的所有惯性力矩全部折算到电机主轴上,等效力矩 *T*_{in}为

$$T_{\rm in} = \left(J_{\rm a} + \frac{J_{\rm b}}{\eta i^2} + J_{\rm c}\right) \stackrel{..}{\theta} (t)$$
(1)

式中, J_a 为电机自身组件转动惯量; J_b 为每个舵片 沿舵主轴的转动惯量; J_c 为丝杠沿电机主轴的转动 惯量; $\theta(t)$ 为转子转角, 是关于时间的函数, $\theta(t)$ 为转子的角加速度; η 为传动效率; i 为减速比。

电动舵机传动过程中会产生的摩擦力矩,忽略 电机内部结构的粘滞蓄力,摩擦力矩主要由库仑摩 擦力矩引起,其大小由摩擦系数和法向载荷决定, 记为*T*_f:

$$T_{\rm f} = T_{\rm fa} + \frac{T_{\rm fb}}{\eta i} \tag{2}$$

式中,*T*_{fa}为电机产生的库仑摩擦力力矩,*T*_{fb}为舵片 与弹体之间密封圈处产生的库仑摩擦力矩。

弹体飞行过程中受到的铰链力矩由大气阻力产 生,其大小由导弹的整体设计参数、飞行速度以及 实时舵偏角决定。把舵片承受的铰链力矩折算到电 机主轴上,记为*T*_h:

$$T_{\rm h} = h\theta(t)/\eta i \tag{3}$$

其中, $h = T_{osm}/\lambda_m$,表示铰链系数, T_{osm} 为任务书要 求舵机最大输出力矩, λ_m 为任务书要求舵机最大舵 偏角。综上,电机主轴所承受力矩可以表示为

$$T_{\rm m} = \left(J_{\rm a} + \frac{J_{\rm b}}{\eta i^2} + J_{\rm c}\right) \ddot{\theta}(t) + \frac{h}{\eta i}\theta(t) + T_{\rm fa} + \frac{T_{\rm fb}}{\eta i}(4)$$

)

以典型正弦激励信号为例:

$$\delta(t) = \delta \sin(\omega_{\rm B} t) \tag{5}$$

式中, δ 为舵机最大舵偏角,即 λ_{m} , $\delta(t)$ 为舵偏角, ω_{B} 为符合任务书要求的舵机频带宽度角频率。其中,电机转子转角与舵偏角关系如下:

$$\theta(t) = i\delta(t) \tag{6}$$

将式(6)求导并带入舵机负载力矩方程,化简 后可得:

$$\left[\frac{\theta(t)}{\delta i\omega_{\rm B}}\right]^{2} + \left\{\frac{T_{\rm m} - T_{\rm fa} + \frac{T_{\rm fb}}{\eta i}}{\delta i \left[\frac{h}{\eta i} - \left(J_{\rm a} + \frac{J_{\rm b}}{\eta i^{2}} + J_{\rm c}\right)\omega_{\rm B}^{2}\right]}\right\}^{2} = 1 \quad (7)$$

由式(7)可以看出电动舵机负载特性曲线是椭圆,横坐标和纵坐标分别为转速和扭矩。

无刷电机的转速具有如下定义:

$$n = \frac{U_{\rm d} - IR_{\rm W}}{K_{\rm b}\Phi_{\rm t}} \tag{8}$$

式中, n 为电机转速, U_d 为直流无刷电机上的等效 电压, I 为电机等效电流, R_w 为线圈绕组, K_b 为反 电动势系数, ϕ_t 为气隙磁通。电机输出转矩 T_{om} 和 流过电机的等效电流 I 有如下关系:

$$T_{\rm om} = K_{\rm m} I \tag{9}$$

式中, $K_{\rm m}$ 为电机转矩系数。一般情况下, 可将电机额定功率 $P_{\rm m}$ 视为常数, 并且 $P_{\rm m} = U_{\rm d}I$, 由式(8)和式(9)可以得出:

$$\frac{R_{\rm W}}{K_{\rm b}\Phi_{\rm t}K_{\rm m}}T_{\rm om}^2 + nT_{\rm om} - \frac{P_{\rm m}K_{\rm m}}{K_{\rm b}\Phi_{\rm t}} = 0$$
(10)

当电机参数指标确定时,可以将其看作电机转 速-转矩在第一象限内的函数曲线,转速增大时电 机转矩减小,低转速时电机将获得较好的带载能力。

综合式(7)和式(10)可知,当电动舵机负载特性曲线和电机额定功率转速-转矩曲线在第一象限相切时,表明匹配较好,在具有一定带载能力的同时提供足够的功率^[13]。在实际当中,选择电机负载特性曲线与舵机负载特性曲线相离不远的方案如图2所示,就可以保证舵机性能的可靠,能够承受较高过载。

图 2 舵机负载特性曲线与电机负载特性曲线

2.2 直流无刷电机选型

无刷直流电动机控制关键在于电子换相,正确 地进行换相,才能保证无刷直流电机可靠地运行。

在无刷直流电机中,来自转子位置传感器的信 号,经处理后按照一定的逻辑程序,驱使某些与电 枢绕组相连接的功率开关晶体管在某一瞬间导通或 截止,迫使原来没有电流的电枢绕组内开始流通电 流,原来有电流的电枢绕组内开始关断电流或改变 电流的流通方向,从而迫使定子磁状态产生变化。 每换相一次,定子磁状态就改变一次,连续不断地 换相,就会在工作气隙内产生一个跳跃式的旋转磁 场,从而使得转子发生转动。

电机选型的第一步是对额定功率进行估算。电动舵机工作时会受到随工况变化的惯性力矩、摩擦力矩和铰链力矩,因此以外界负载的最大力矩计算额定功率 *P*_m:

$$P_{\rm m} = mT_{\rm hmax}\omega_{\rm m} \tag{11}$$

式中, T_{hmax} 为最大铰链力矩(N・m); ω_m 为舵面最大 角速度($^{\circ}/s$);m为经验安全系数,一般取 1.5~2.5。

为保证电机功率满足任务书要求,选取经验系 数为2。根据技术指标可得铰链力矩 $T_{\rm hmax}$ = 1N·m, 舵面最大角速度 $\omega_m = 240^{\circ}/s_{\circ}$ 带入得到电机功率为 21 W。考虑舵机抗高过载要求,根据电动舵机负载 特性和电机负载特性的关系,选用特殊定制的电机, 并进行参数和结构改进设计。如果炮射导弹发射时 冲击过载垂直于电机轴线作用在其结构上,轴两侧 所受剪应力以及轴中心承受的弯曲应力会使得电机 轴产生较大线位移,并且转子和定子之间的间隙也 会因此发生变化,导致电机丧失工作能力。为了防 止上述情况的发生,需要将电机布置为其轴线与导 弹轴线平行,这样弹体在受到发射冲击过载时,电 机主轴仅受到远小于材料应力极限的压应力。并且 选用可以增加电机轴向受力上限的角接触轴承,再 将缓冲垫安装在电机结构的尾部,以此确保满足舵 机抗高过载需求。具体电机技术指标如表2所示。

表2 电机参数

参数	参数值
标称功率 $P_{\rm m}$ /W	21.0
额定电压/V	20 ± 0.05
额定电流/A	≤3
额定转速 n/(r/min)	22000
空载转速 n/(r/min)	22000
额定转矩 T _{om} /(mN・m)	≥15
空载电流/mA	≤500
机电时间常数/ms	8
抗轴向过载/g	≥25000
抗径向过载/g	≥3000

2.3 传动机构设计

考虑到舵机空间紧凑,且要求舵面能够折叠, 应避免使用悬梁式结构,采用高强度专用螺钉作为 径向连接螺钉,运用合理的倒角设计防止承重部位 应力集中。减速机构选用螺纹丝杠形式布局,螺纹 丝杠摩擦小、精度高、工艺成熟,使舵机减速机构 在高过载复杂工况下仍能正常运行。支持圆柱齿 轮—螺纹丝杠—拨叉结构的传动形式如图2所示。

图 3 传动机构框图

电机通过齿轮减速器,带动丝杠做旋转运动, 螺母将旋转运动转化为直线运功,带动拨叉转动, 实现舵片偏转。另外考虑发射过程中需要承受较大 过载,舵机本体需要做好防过载设计,对于轴承需 要做好防过载保护,保证高过载环境适应性。

根据舵机空间情况,选用螺母螺杆和拔叉主要 参数如下:

(1)螺杆导程 d: 1 mm;

(2)拔叉力臂 L: 14 mm。

由以上参数可以计算出螺母螺杆以及拨叉环节 的减速比 *i*₁。

$$i_1 = 2\pi \frac{L}{d} \tag{12}$$

计算可得: i₁为78。

根据电机参数和螺母螺杆以及拨叉环节的减速 比 *i*₁, 计算可得齿轮减速比 *i*₂:

$$i_2 = \frac{T_{\rm os}}{i_1 T_{\rm om}} \tag{13}$$

式中, *T*_{os}为舵机输出扭矩, 根据任务书要求, 取 1 N·m; *T*_{om}为电机额定转矩, 根据电机技术参数, 取 0.015 N·m_o

计算可得齿轮减速比 *i*₂ 应不小于 2.13, 取 整 2.5。

根据空间布局限制,以及齿轮优选系数,选用 一级齿轮减速,其中具体参数如下:

(1)电机齿轮参数: Z₁=10;

(2) 螺杆齿轮参数: $Z_2 = 25_{\circ}$

舵机传动机构总减速比 i, 由式(14)计算可得 195:

$$i = i_1 \times i_2 = i_1 \left(\frac{Z_2}{Z_1}\right)$$
 (14)

2.4 电动舵机结构抗高过载设计

无刷直流电机在强冲击载荷作用下,其内部轴 承极易受损,影响电机正常工作。将限位块设置在 轴承两侧,能够避免轴承内外圈分离,起到保护轴 承的作用。另外,将吸能减震垫片放置在限位块的 一侧,同样可以降低轴承所受高过载带来的冲击。

从以下两个方面对硬件电路进行抗高过载设计。 一方面是要以贴片封装的电子元器件作为首选,另 外一方面是对电路板进行发泡、灌封固化。选择使 用绝缘性和粘结度较高的聚氨酯灌封材料,这种材 料拥有较好的电气绝缘性能,质量较小,可以保证 设备整体设计尺寸完好,在-90~70℃温度范围下 仍能保持特性良好,不会有开裂的情况发生。灌封 固化整体流程如图4所示。

3 舵机控制器设计

舵机控制系统是导弹方向控制机构,系统的控制电路接收并执行飞控组件发出的舵控指令,并且 对接收的位置反馈信号做出反应,不断纠正飞行姿态,控制弹体按照预定的飞行路线执行命令,直至 击中目标。

图 5 控制电路工作原理框图

本文舵机控制器以 GD32F407 和三相桥驱动电 路构成闭环控制电路系统。系统主要由一下几个部 分构建,包括通信收发电路、稳压电路、光耦隔离 电路、三相桥驱动电路、以及 ADC 调理电路等。主 要作用如下:

(1)控制电路 ARM 通过 RS-422 通信接口电路与 弹载工控机进行交互,拥有接收舵控指令、反馈舵 偏角信号、发送自检信号等功能。 (2) 通过控制电路 ARM 的 ADC 调理模块对舵面 反馈电压进行调理与滤波,并将数字量送入数字信 号处理器。

(3) 舵机控制系统将舵控指令与舵反馈信号相结合,经过算法运算后输出数字控制量,包括四路 PWM 转速控制信号和 DIR 方向控制信号。

(4)隔离电路对数字控制信号进行隔离调理, 并进行功率放大后送给无刷电机逻辑控制驱动器, 电机输出轴连接减速机构,从而对舵片进行控制。

3.1 主控电路

GD32F407 是兆易创新公司生产的基于 ARM Cortex - M4 处理器具有浮点运算功能、低中断延迟时间和低成本调试特性的 32 位通用微控制器。运行 主频可达 200 MHz, 256 K 片上 SRAM, 3072KB 主 FLASH 存储器, 30 K 引导 ROM。

为了满足浮点处理运算和无刷电机控制需求, 本文主要使用的微控器外设包括 12 路 PWM,1 路 SCI 串行通信接口,6 路输入 IO 口用于采集电机霍 尔,2 路输出 IO 口用于舵展驱动。

ARM 外围电路通常由时钟电路、JTAG 接口电路、稳压电路组成^[15]。4~32 MHz 的外部高速晶体振荡器可为系统时钟提供更为精确的时钟源,主控制器内部存在三个锁相环,可对外部时钟进行倍频,其中 PLLP 时钟可作为系统时钟(不超过 200 MHz)。程序的在线调试和仿真通过 JTAG 标准测试接口及相应的控制器,从而不但能控制和观察系统中处理器的运行,测试每一块芯片,还可以用该接口下载程序。稳压电路用于将电池电压转化成控制电路工作电压,保证控制电路外围器件与微控器正常工作。

3.2 通信收发电路

通信收发电路作为微控器与飞控和远程测控组件交互的桥梁,是舵机精确控制的基础。本文采用 RS-422 异步全双工通讯模式,并通过专用 RS-422 通信芯片 MAX3030EEUE + T 实现电平转换功能,该 芯片可以有效提高通信接口电路的抗静电能力,增 强信号传输的稳定性。ARM 内部使用 SCI 通讯模 块,可通过软件进行更加详细的设置。

3.3 电机驱动(舵展、功率)电路

电机驱动电路接收微控器输出的 PWM 信号和 DIR 信号,同时接收电机霍尔,通过光耦隔离电路 进行舵展驱动,光耦隔离电路可以有效防止功率部 分对数字电路产生干扰。

将上述接收到的信号进行综合逻辑处理,控制 由晶闸管组成的三相全桥驱动电路,使 MOS 管按照 规定的相位顺序通断,实现无刷电机三相绕组交替 通电,催动电机运转。三相桥驱动电路采用 Ir2136S 芯片与 MOS 管组成的全桥电路。

3.4 位置反馈电路

位置反馈电路用于检测舵面角度,角位移传感 器将检测到的角度偏转量输出,由主控制器 ARM 的 AD 变换电路进行接收,参与电动舵机的位置闭环, 因减少了数字编码输出的过程,大大提高了伺服控 制系统的准确度。

其中由于电位计供电电压高于 A/D 转换芯片的 工作范围,所以需要 ADC 调理电路进行中继处理, 对来自角位移传感器的角度位置信号进行衰减滤波。 差分型驱动电路相较单端输出型驱动电路性能更为 优越^[16],本文选用全差分驱动电路如图 5 所示。

图7 全差分驱动电路

4 控制算法及设计

PID 控制算法具有算法简单、鲁棒信好、易于 实现等优点^[17]。本文采用分类 PID 算法设计三闭环 控制器。根据位置、速度、电流三个闭环对于控制 精度的侧重有不同需求,设定不同的比例、微分、 积分系数以进行 PID 控制。电流环控制的稳态要求 是被调量在稳态时等于系统的给定量,偏差为零, 动态要求是响应速度快且不允许超调量过大,因此 电流环选择 PI 调节器;速度环控制的稳态要求是被 调量在稳态时等于系统的给定量,偏差为零,动态 要求是不易受外界影响,因此速度环选用 PI 调节 器;位置环的需求是响应速度快且不允许有超调, 因此位置环选用 P 调节器,将积分、微分控制参数 均置零。 图 6 为舵机控制软件结构图。图中各个单元代 表其功能电路,通信单元代表通信接口电路,电机 功率驱动单元代表驱动电路。软件以模块形式运作, 在微控器控制系统单元内。

4M 4-5 00 Yest A. D. 49 11.	1	
微控益初始化模块		
参数初始化模块		
外设初始化模块		
检测标定角度参数模块		
通信与零位校准模块	通信单元	
舵面反馈采集与控制量计算模块	▶ ▶ [▶] 舵片角度测量	单元
舵展控制模块	舵展驱动单;	īć.
PWM输出模块	电机功率驱动	筆元
监控系统	「 也机霍尔	
微控器 控制系统单元		

图 8 舵机控制软件结构图

为保证舵机控制程序不会因为数据异常而死机 或进入死循环,程序设置了看门狗,如果看门狗既 定时间内没有复位,系统会自动重启。而且执行响 应程序的条件是判断标志位为真,若为假则不进行 本操作,直接执行下一操作。这样可以保证在飞控 系统不下发控制指令时,舵机保持原本的力矩和舵 偏角,这是电动舵机高响应速度的前提。

为了适时输出控制量,采用定时器中断将 PWM 控制参数快速更新,该程序以 20 kHz 的频率将 PWM 控制信号传输给驱动电路,减小控制滞后,提 高舵机对控制量的响应速度。电机反向时会产生大 感应电流,为防止电机不被其损害,程序设计电机 在反向前会先执行 40 μs 零占空比 PWM 信号输出, 将电机减速。

5 舵机系统仿真及试验分析

在 Matlab/Simiulink 中建立舵机模型带入详细参数进行仿真。

输入斜坡激励进行速度跟随仿真分析。仿真结 果如图7、图8所示。图中可见转速跟随200°/s斜 坡性能良好。跟随性能满足设计要求。

输入 10°阶跃信号进行仿真分析。仿真结果如图 9 所示。根据图中数据计算可知速度大于 240°/s, 调节时间小于 50 ms, 满足设计要求。

通过输入扫频激励进行仿真,对其增加1N·m /20°扭矩负载,仿真结果如图10所示。图中可见带 宽约为18Hz,满足指标要求。

输入2°阶跃激励进行仿真。仿真分成空载和加载两个部分,加载仿真中增加1N·m/20°扭矩负

图 12 空载 2°阶跃仿真

图中可见空载最大超调量为6%,上升时间约为 65 ms。加载超调量为2.5%,上升时间约为44.7 ms, 稳态误差≤0.2°,满足要求设计。

输入 20°、15°、10°以及 5°阶跃激励进行仿真, 增加 1 N·m /20°扭矩负载,结果如图 13~图 16 所 示。图中可见,偏转精度小于 0.25°。由结果可知, 在加载条件下,位置精度满足要求。

图 17 加载 5°阶跃位置精度仿真

6 结 语

本文设计了一种高过载高响应小型双通道数字 电动舵机的控制系统,该系统以微控制器作为控制 系统核心,在能够完成复杂即时控制算法的基础上 也拥有了极大程度的系统功能延展性。采用角位移 传感器直接测量实时偏转角,以无刷直流电机作为 伺服电机,采用结构密集的螺纹丝杠作为减速传动 机构,分别对控制系统硬件电路、传动机构以及控 制算法进行了设计,并对控制系统进行测试。同时, 在部件选型、结构和程序设计的过程中充分考虑了 舵机的抗高过载以及高相应的需求。实验结果表明, 所设计的电动舵机控制系统,具有稳态精度高、响 应速度快、输出转矩大等优点,一定程度提升了伺 服控制系统的执行效率,满足任务书要求指标,同 时兼顾舵机批生产的经济性。

参考文献

- [1] 姚秋实,李立京.小型旋转弹电动舵机控制系统的设计与实现[J].自动化与仪,2019,34(12):11-15,79.
- [2] 杨金鹏, 王帅兵, 曹鑫磊, 等. 小型导弹电动舵系统程序在线升 级设计与实现[J]. 电子设计工程, 2019, 27(11): 70-73, 78.
- [3] 李璀璀. 高过载制导炮弹电动舵机系统设计[D]. 南京: 南京 理工大学, 2021.
- [4] 王伟,马志赛.制导炮弹的优势特点及发展趋势[J]. 飞航导 弹,2011(7):10-14.
- [5] 苏享,桂成兵,周亚军.制导弹药舵机研究现状及其关键技术 分析[J].飞航导弹,2008(11):48-50,59.
- [6] 毕晔.飞航导弹舵机数字化伺服控制系统的设计与开发[D]. 成都:电子科技大学,2012.
- [7] 张新华. 完全双余度电动舵机系统的研究与设计[J]. 微电机, 2006(2): 32-34, 41.
- [8] 刘文虎,郑继敏,文军. 高可靠航天多余度伺服技术发展综述[J]. 自动化与仪器仪表, 2020(9): 20-23, 28.
- [9] 高光磊,宋锦,王振华. 固体导弹伺服系统的现状和发展趋势 [J]. 战术导弹技术, 2009(2):58-61.
- [10] 罗明亮, 严铖, 唐剑超, 等. 基于 CAN 总线的双通道舵机设计 [J]. 微电机, 2020, 53(4):93-98, 102.
- [11] 李克勇,杨永强,黄金. 高机动旋转导弹鸭式双通道控制研究 [J]. 上海航天, 2016, 33(2): 53-57.
- [12] 丁锋. 系统辨识(3):辨识精度与辨识基本问题[J]. 南京信息 工程大学学报(自然科学版), 2011, 3(3): 193-226.
- [13] Zheng H, Huang M, Zhan L, et al. Optimization and Dynamic Simulation of Electric Actuator Transmission Based on High Precision Ball Screw[J]. Intelligent & Fuzzy Systems, IOS Press, 2021, 40 (2): 3015-3023.
- [14] 杨兴兵. 聚氨酯灌封胶的研究现状概述[J]. 聚氨酯工业, 2021, 36(2):45-48.
- [15] 李红益,张好明,王应海. 基于 ARM + FPGA 自动装卸 AGV 伺 服控制器的研究[J]. 微电机, 2016, 49(9): 66-70.
- [16] 张先林.双路径高精度功率分析仪硬件设计与实现[D].成都: 电子科技大学,2022.
- [17] 乔林,刘颖,胡畔,等. 基于遗传算法与模糊 PID 复合控制的 电机调速研究[J]. 微电机, 2021, 54(7):92-98.

基于环境温度变化对有刷电动机工作特性影响的研究

崔广慧,张治华,曹 宽,米永存 (西安航天精密机电研究所,西安710100)

摘 要: 电机是一种不均质体,由多种不同温度特性和膨胀系数的金属和非金属材料组成,因此环境温度骤变会引 发电机故障甚至失效。为了探究环境温度变化对永磁式有刷直流力矩电动机工作性能的影响,本文以一台有刷直流 力矩电动机为例,基于不同温变速率的温度循环筛选试验验证,建立试验现象分析与试验数据对比,明确了环境温 度变化对有刷直流力矩电动机性能指标或系统可靠运行的影响,为军用武器装备系统研制阶段的方案设计提供了一 定的工程实践价值和理论依据。

Research on the Influence of Ambient Temperature Change on the Operating Characteristics of Brush Motor

CUI Guanghui, ZHANG Zhihua, CAO Kuan, MI Yongcun (Xi'an Aerospace Precision Electromechanical Institute, Xi'an 710100, China)

Abstract: Motor is a kind of heterogeneous, composed of a variety of metal and non-metal materials with different temperature characteristics and expansion coefficient, so the sudden change of ambient temperature will cause motor failure or even failure. In order to explore the influence of ambient temperature change on the performance of permanent magnet brush DC torque motor, this paper took a brush DC torque motor as an example, based on the temperature cycle screening test verification of different temperature variable rates, established the analysis of test phenomena and the comparison of test data, and identified the influence of ambient temperature change on the performance index of brush DC torque motor or the reliable operation of the system. It provides some engineering practical value and theoretical basis for the program design of military weapon equipment system.

Key words: ambient temperature change; brush motor; fault

0 引 言

永磁式有刷直流力矩电动机具有响应速度快、 力矩波动小、低速平稳性高、机械特性和调节特性 线性度好等优点,为平台系统中的成熟产品,在雷 达导引头、红外成像导引头、导弹、飞控系统、光 学吊舱、稳定云台等系统中作为驱动执行元件得到 了普遍应用。由于电机机械结构上有电刷和换向器 装置,当环境温度变化时,电刷与换向器会产生接 触不良现象,进而对电机工作性能或系统的安全运 行造成影响^[13]。因此,研究环境温度变化对有刷直 流力矩电动机工作特性的影响分析具有一定的迫切 性。而国内外研究环境温度变化对有刷电机工作特 性影响研究很少。 军用武器装备系统在较低装配阶段初期需进行环 境应力筛选试验,以鉴别和剔除产品早期出现的故 障。当电机经受周围大气温度的急剧变化时,可能产 生物理损坏或性能下降。本文以一台永磁式有刷直流 力矩电动机为例,基于不同环境温度变化特性及电机 工作运行情况,建立了电机物理模型,结合试验现 象和数据结果对比分析,试验结果验证了温度变化 对有刷直流力矩电动机工作性能影响的准确性。

1 电机结构和工作原理

1.1 电机结构

为了在一定的电枢体积和直流电压下能产生较 大的转矩和较低的转速,有刷直流力矩电动机通常

收稿日期: 2023-01-11,修回日期: 2023-05-27 作者简介: 崔广慧(1989),女,硕士,研究方向为特种电机的设计与控制。 张治华(1977),女,本科,研究方向为永磁电机的设计与优化。 做成扁平式结构。总体结构型式有分装式和组装式 两种,如图1所示。分装式结构包括定子、转子和 电刷架三大组件。组装式结构包括定子、转子、电 刷架、机壳、端盖、轴承和电机轴等。

图1 永磁式直流力矩电动机结构图

本文研究的电机为组装式永磁直流力矩电动机, 如图 2 所示。电机峰值堵转电压为 24 V,峰值堵转 电流为 8A,电枢电阻为 3.6 Ω,常温、低温及高温 起动电压均不大于 1 V^[4]。

图 2 电机外形图

1.2 电机工作原理

有刷直流力矩电动机定子上有固定的主磁极和 电刷,转子上有电枢绕组和换向器,直流电压通过 电刷和换向器进入电枢绕组中产生电枢电流,然后 电枢电流产生的磁场和主磁场相互作用产生电磁转 矩,使电机带动负载旋转,如图3所示。

图 3 电机工作原理图

2 温度变化对有刷电机工作的影响

恶劣低温、高温或环境温度发生急剧变化时, 对电机产生的影响如下^[5-10]:

(1) 胶层表面开裂、分离;

(2)紧固螺钉卡紧或松动;

(3)材料的收缩、膨胀或诱发应变速率不同, 导致零部件变形或破裂;

(4)轴承润滑剂粘度变低或增加,导致润滑剂 外流或润滑作用降低;

(5)绝缘阻值异常;

(6)快速冷凝水或结霜引起电气性能或机械故障;

(7)静电过量。

为了探究环境温度变化对有刷电机性能指标的 影响,将一台有刷直流力矩电动机在不同温变速率 条件下进行温度循环试验,如表1所示。

表1 温度循环试验条件

试验 A	试验 B
10	5
$-45 \sim +70$	
高、低温各保持 1h	
降温→低温保持→升温- 高温保持→室温	
2	
1	
	<u>试验 A</u> 10 -45 高、低温 降温→低温 高温保:

试验过程中,分别在低温保持、低温升高温、 高温保持及高温降低温阶段给电机通入直流起动电 压1V,并用100V的兆欧表检查电机绕组对机壳的 绝缘电阻应不小于50 MΩ。

2.1 温度循环试验 A

按照表1进行试验A,试验方法如下:

(1) 低温保持阶段

电机随箱以 10 ℃/min 的速率降温至(-45 ± 2)℃,保持1h,在最后5 min 给电机通入直流电压 1 V,两次循环中电机都可正常工作运行,且电机绕 组对机壳的绝缘电阻大于 50 MΩ。

(2) 低温升高温阶段

电机随箱以 10 ℃/min 速率从(-45 ±2)℃升温 至(+70 ±2)℃,每升温 5 ℃给电机通入直流电压 1 V,两次循环中分别升温到 0 ℃和+15 ℃时,电 机均出现了短时连续故障现象,且电机表面结霜, 如图4所示,增大起动电压到峰值堵转电压 24 V, 电机不能正常工作运行,电流为零,故障期间监测

电机阻值从几十欧到几兆欧变化,如图5所示,用 100 V 兆欧表监测电机绕组对机壳的绝缘电阻均大 于 50 MΩ, 两次循环分别升温到 + 45 ℃ 和 + 60 ℃ 时, 电机恢复正常工作运行, 试验现象如表2 所示。

图 4 低温升高温阶段试验现象

图 5 低温升高温阶段电阻异常现象 表 2 转子线圈阻值测试结果

	第1	次循环	第2		
温度/℃	电机	故障	电机	故障	备注
	工作	时间/min	工作	时间/min	
- 45			\checkmark		
- 40	\checkmark		\checkmark		
- 35	\checkmark		\checkmark		
- 30	\checkmark		\checkmark		
- 25	\checkmark		\checkmark		
- 20			\checkmark		
- 15	\checkmark		\checkmark		
- 10	\checkmark		\checkmark		
-5	\checkmark		\checkmark		
0	×		\checkmark		
+ 5	×		\checkmark		
+10	×	4	\checkmark	4	结霜
+15	×	4	×	4	
+20	×		×		
+ 25	×		×		
+ 30	×		×		
+ 35	×		×		
+40	×		×		
+45	\checkmark		×		化霜
+ 50	\checkmark		×		
+ 55	\checkmark		×		
+ 60	\checkmark		\checkmark		
+65	\checkmark		\checkmark		
+70					

注:"√"表示电机旋转,"×"表示电机不旋转。

(3)高温保持阶段

电机随箱以 10 ℃/min 的速率升温至(+70 ± 2)℃,保持1h,在最后5 min 给电机通入直流电压 1 V, 两次循环中电机都可正常工作运行, 且电机绕 组对机壳的绝缘电阻大于 50 M Ω_{\circ}

(4) 高温降低温阶段

电机随箱以10 ℃/min 速率从(+70 ±2)℃降温 至(-45±2)℃,观察试验箱,每升温5℃给电机通 入直流电压1V,两次循环中电机都可正常工作运 行,且电机绕组对机壳的绝缘电阻大于 50 M Ω_{\circ} 。

2.2 温度循环试验 B

按照表1进行试验B,试验方法如下:

(1)低温保持阶段

电机随箱以 5℃/min 的速率降温至(-45 ± 2)℃,保持1h,在最后5 min 给电机通入直流电压 1 V, 两次循环中电机都可正常工作运行, 且电机绕 组对机壳的绝缘电阻大于 50 M Ω_{\circ}

(2) 低温升高温阶段

电机随箱以5 ℃/min 速率从(-45 ± 2)℃升温 至(+70±2)℃,每升温5℃给电机通入直流电压1 V, 两次循环中升温+10℃时, 电机均出现了短时连 续故障现象,且电机表面结霜,如图6所示,增大 起动电压到峰值堵转电压 24 V, 电机不能正常工作 运行, 电流为零, 故障期间监测电机阻值从几十欧 到几兆欧变化,如图7所示,用100V兆欧表监测 电机绕组对机壳的绝缘电阻均大于 50 MΩ, 两次循 环升温到+40℃时,电机恢复正常工作运行,试验 现象如表3所示。

图 6 低温升高温阶段试验现象

_	第1	第1次循环		第2次循环		
温度/℃	电机	故障	电机	故障	备注	
	工作	时间/min	工作	时间/min		
-45	\checkmark		\checkmark			
-40	\checkmark		\checkmark			
- 35	\checkmark		\checkmark			
- 30	\checkmark		\checkmark			
-25	\checkmark		\checkmark			
- 20	\checkmark		\checkmark			
- 15	\checkmark		\checkmark			
- 10	\checkmark		\checkmark			
- 5	\checkmark		\checkmark			
0	\checkmark		\checkmark			
+ 5	\checkmark		\checkmark			
+ 10	×	5 min	×	5 min	结霜	
+ 15	×	5 11111	×	5 11111		
+ 20	×		×			
+ 25	×		×			
+ 30	×		×			
+ 35	×		×			
+40	\checkmark		\checkmark			
+45	\checkmark		\checkmark		化霜	
+ 50	\checkmark		\checkmark			
+ 55	\checkmark		\checkmark			
+ 60	\checkmark		\checkmark			
+ 65	\checkmark		\checkmark			
. 70	1		1/			

表 3 升温阶段试验现象

注: "√"表示电机旋转, "×"表示电机不旋转。

(3)高温保持阶段

电机随箱以 5 ℃/min 的速率升温至(+70 ± 2)℃,保持1h,在最后 5 min 给电机通入直流电压 1 V,两次循环中电机都可正常工作运行,且电机绕 组对机壳的绝缘电阻大于 50 MΩ。

(4)高温降低温阶段

电机随箱以5℃/min 速率从(+70±2)℃降温至 (-45±2)℃,每升温5℃给电机通入直流电压1V, 两次循环中电机都可正常工作运行,且电机绕组对 机壳的绝缘电阻大于50 MΩ。

2.3 试验现象

经过试验 A 和试验 B 后,电机外观质量符合要 求,零、组件没有松动或变形,100 V 电压下绝缘 电阻阻值无穷,复测电机全部性能指标均符合详细 规范要求。

电机在(-45 ±2)℃低温保持、(+70 ±2)℃高 温保持及高温降低温阶段均可以正常工作,在低温 升高温阶段会出现短时故障现象,如表4所示。

温循	循环 次数	结霜 温度 /℃	化霜 温度 /℃	故障 时间 /min	故障温 度范围 /℃
试验 A	1 2	+10	+ 45	4	0 ~ +40 +15 ~ +55
试验 B	1 2	+10	+ 35	5 5	+ 10 ~ + 35 + 10 ~ + 35
故障 现象	电机电 正常。	电阻骤大、	变化快、	无规律,	但绝缘电阻

表4 低温升高温阶段故障现象

3 电动机参数及物理模型

有刷直流力矩电动机参数如表 5 所示,结构图 如图 8 所示。

表5 有刷直流力矩电动机基本参数

参数	故障温度范围/℃
峰值堵转电压/V	24
峰值堵转电流/A	8
极数	10
槽数	41
定子外径/mm	49
转子外径/mm	38.6
铁心轴向长度/mm	21
永磁体厚度/mm	2.3
永磁体材料	NSC27G

转子铁心 电枢绕组 换向器 电刷 定子铁心

图 8 有刷直流力矩电动机结构图

为了验证试验现象的正确性及合理性,在基本工 作环境条件下,根据电机的结构特点及电磁特性,确 定电机整个轴向长度为求解域,建立外部有空气域包 裹的求解域物理模型,对电机工作状态和故障状态两 种工况进行磁路耦合分析,如图9所示。求解域物理 模型包括定子铁心、磁钢、转子铁心、电枢绕组。

电机在常温、高温保持、高温降低温及低温保持阶段通入直流起动电压1V,过对物理模型求解域进行磁路耦合分析,得到电机工作状态特性曲线,如图10所示。

3.2 电动机故障状态

电机在低温升高温故障阶段通入直流起动电压 1 V 增大到峰值堵转电压 24 V,通过对物理模型求 解域进行磁路耦合分析,得到电机故障状态特性曲 线,如图 11 所示。

3.3 电动机两种工况特性分析

基于环境温度变化对有刷直流力矩电动机工作 性能的影响,通过对建立的物理模型求解域磁路耦 合分析可知^[11]:

(1)在常温、高温保持、高温降低温及低温保持 阶段,电机在1V直流电压下可以正常运行,电枢电 阻为3.6Ω,电枢电流为0.152 A,转速为22 r/min, 如图10所示。

(2)在低温升高温阶段,给电机通入直流起动 电压1V增大到峰值堵转电压24V,电机故障不工 作,电枢电阻从几十欧到几兆欧变化,电枢电流为 0A,转速为0r/min,如图11所示。

4 温度变化对有刷电动机影响分析

根据试验现象、试验数据及温度变化影响分析: 在低温升高温阶段,由于试验箱内急剧升温,电机 表面温度却未能达到与试验箱内温度同步,即试验 箱内升温到0℃以上时,电机内部温度仍在0℃以 下,局部温差使电机表面出现结霜现象,导致电刷 与换向器接触面有一层霜膜,电刷与换向器似接非 接,出现接触不良情况,所以电刷的接触电阻异常, 从几十欧到几兆欧变化,使电机不能正常换向,此 时给电机通入直流电压从1V增至24V,电机故障 不定子。

试验箱继续升温,直至电机内部温度与箱内环 境温度达到平衡时,电机表面逐渐化霜,使换向器 表面水汽被烘干;电刷与换向器接触正常,使电枢 电阻阻值恢复正常,此时给电机通入直流电压1V, 电机可以正常工作。

通过以上分析可知:有刷直流力矩电动机处于 低温升高温的环境中,由于电刷换向装置,存在短 时故障现象;温度温变率不同,有刷电机故障温度 范围不同,故障时长也不相同。

5 结 语

本文针对环境温度变化对有刷直流力矩电动机 工作特性影响的问题,通过试验验证和物理模型求 解域磁路耦合分析,得到以下结论:

(1)在低温保持、高温保持和高温降低温阶段, 给电机通入直流电压,电机可以正常工作运行。

(2)在低温升高温阶段,电机表面存在结霜现象,导致电刷与换向器接触异常,电枢电阻骤大,给电机通入直流电压,电机故障,根据环境温度变 (下转第29页)

超声电机及其摩擦材料电气绝缘特性分析与控制策略

张 武¹,张秀莉¹,史玉娣¹,陈平易¹,李 璐¹,曲建俊²,申 田¹ (1. 西安创联超声技术有限责任公司,西安 710065; 2. 哈尔滨工业大学,哈尔滨 150001)

摘要:基于超声电机电气绝缘特性设计,识别出影响电机绝缘特性的主要因素为摩擦材料,分析摩擦材料的导电机理,在此基础上提出控制策略,并制备摩擦材料,装配电机验证了控制策略的有效性,为工程应用提供借鉴。
 关键词:超声电机;摩擦材料;绝缘特性;控制策略
 中图分类号:TM359.9
 文献标志码:A
 文章编号:1001-6848(2023)10-0025-05

Analysis of Electrical Insulation Characteristics and Control Strategy of Ultrasonic Motors and Friction Materials

ZHANG Wu¹, ZHANG Xiuli¹, SHI Yudi¹, CHEN Pingyi¹, LI Lu¹, QU Jianjun², SHEN Tian¹
(1. Xi' an Chuanglian Ultrasonic Technology Co., Ltd., Xi' an 710065, China;
2. Harbin Institute of Technology, Harbin 150001, China)

Abstract: Based on electrical insulation characteristics of ultrasonic motors, the friction material is identified as the main factor affecting the insulation characteristics of the motor. Analyzing the conductive mechanism of friction materials , on this basis, the control strategy was proposed and the friction material was prepared. The motors assembly verifies the effectiveness of the control strategy and provides reference for engineering applications.

Key words: ultrasonic motor; friction materials; insulation characteristic; control strategy

0 引 言

超声电机为有源机电器件,其电气绝缘特性表 现为电机各接点,尤其是高电压接点对壳体的绝缘 电阻不低于配套系统分配的阻值,一般为 DC250 V/100 MΩ,或者 DC500 V/500 MΩ。超声电机通 过输出轴、壳体以及驱动控制电路与系统互联,电 机本体绝缘电阻对控制电路起到了隔离和保护作 用,避免电流泄露对其它电路造成干扰,甚至影响 系统正常工作,是工程应用中必须考虑的系统安全 性问题。

同时,在超声电机工程化生产过程中,绝缘电 阻也是一项重要的考核指标,使用绝缘电阻测试仪, 施加 DC250 V 或者 DC500 V 电压,保持电压时间 10 分钟,测试绝缘电阻值。实际工作中,通常出现电 机装配完成,机械性能测试合格,测试绝缘电阻不 合格;某些电机在通过温度应力试验后,绝缘电阻 下降到 5 MΩ 以下,甚至加电压直接导通。这对产 品质量、生产周期和成本造成了极大的不利影响, 亟需从根本上解决超声电机的电气绝缘问题。

1 超声电机电气绝缘特性设计

对于金属壳体封装型超声电机,主要由定子、 转子、预压力施加和传动机构组成,如图1所示。 定子是由压电陶瓷换能片、弹性体、电机 L/O 端柔 性线路粘接而成;转子由转子圆盘和摩擦材料粘接 而成;转子与输出轴通过键或者螺钉联接;定转子 之间的预压力通过定子底座与机壳的螺纹紧固,由 机壳上的轴承传递。定子为电气部件,至少有三路 接点,两路驱动高压 A 相、B 相接点,一路回线 com 接点。因此,电机各接点对电机壳体的绝缘特 性,实际取决于定子中弹性体和定子紧固螺钉与电 机底座的隔离,以及转子中摩擦材料与定子的隔离。

超声电机定子弹性体作为电机回路是设计中无 法规避的,采取体积电阻率高的绝缘材料来隔离定 子。其实电机中除定子外,其它结构一般为导通。 因此从电机结构和材料绝缘特性两个方面进行电机 绝缘特性设计:

收稿日期: 2023-08-03

作者简介:张 武(1969), 女, 高级工程师, 研究方向为超声电机结构与工艺。

图1 超声电机结构图

(1)定子与底座之间通过在柔性印刷线路板上
 设计聚酰亚胺膜片进行隔离绝缘。聚酰亚胺膜绝缘
 耐压为 100 ~ 300 KV/mm,体积电阻系数为≥1015
 Ω・m,产品中设计厚度为 100 μm,理论耐压为10~
 30 KV,绝缘电阻为 10¹⁰ Ω 量级。

(2)定子与底座的紧固螺钉设计聚酰亚胺绝缘 护套。

(3)电机引出端焊点使用 GD414 脱醇型单组份 室温硫化硅橡胶进行绝缘封装,同时为确保绝缘的 有效性,在底座焊点位置粘贴 3M 胶带进行二次 绝缘。

(4) 电机转子与定子弹性体通过摩擦材料绝缘。

目前,从超声电机实际工程应用情况充分验证 了(1)~(3)的可行性,摩擦材料绝缘成为了影响电 机电气绝缘特性的主要因素。因此,本文重点从摩 擦材料电气绝缘特性分析,提出控制策略。

2 摩擦材料电气绝缘特性分析

2.1 摩擦材料现状

超声电机均通过定、转子摩擦界面实现能量和 运动的传递,摩擦材料对电机性能影响至关重要。 摩擦材料要求具有以下特性:适合的摩擦系数(0.15 ~0.30),良好的耐磨特性,摩擦副表面的磨损要尽 可能小;适当的硬度(邵D60~80)和摩擦副表面硬 度的良好匹配;良好的导热性、耐振动和耐温度冲 击特性,稳定的物理和化学特性;和摩擦副之间较 低的粘附力;同时具有良好的机械加工性能^[1]。

目前超声电机最佳摩擦材料聚合物树脂为聚四 氟乙烯(以下简称 PTFE)。聚四氟乙烯是一种白色、 无味、无毒的热塑性材料,动静摩擦系数差异小, 物理稳定性与化学稳定性好,使用温度范围宽。但 其耐磨性差、宜蠕变、硬度与弹性模量偏低,且表 面活性低,与金属的粘结性较差,所以一般用共混 改性或填充改性的方法来增强聚四氟乙烯的机械强 度与耐磨性。在旋转型超声电机上使用时,以聚四 氟乙烯为基体的摩擦材料应用较成熟,电机堵转力 矩较大,无噪音、运行稳定^[2]。聚四氟乙烯基体摩 擦材料主要构成为:60%~80%聚四氟乙烯;20% ~40%增强改性剂^[3]。增强改性剂常用的聚苯酯、 石墨烯纤维、纳米金刚石、纳米二氧化硅、微米铜 粉、石墨、二硫化钼等,摩擦材料组成如图2所示。

图 2 摩擦材料组成图示

日本学者 Tskaaki Ishii 等也以 PTFE 为基体,碳 纤维粉为增强填料进行了研究,该研究大幅提高了 摩擦材料的使用寿命,并提高了超声电机的性能, 将该摩擦材料应用于复印机中,提升了整体性 能^[46]。德国学者 Rehbein 和 Wallaschek 研究 PTFE、 PI 及其复合材料摩擦磨损性能,结果表明: 30 wt.% PTFE + PI、20 wt.% PTFE + 20 wt.% CF + PI 这 两种摩擦材料与高碳钢对磨时耐磨性较好^[7]。

国内自 2000 年前后,以哈尔滨工业大学、南京 航空航天大学、中科院兰州化学物理研究所为代表 一直在开展 PTFE 为基体的摩擦材料研究,使超声 电机在输出力矩、转速、转化效率以及运行噪声等 方面取得了较好的研究成果,在航天、航空、工业 装备、医疗设备等转台驱动中获得应用。

南航大赵淳生院士团队摩擦材料是在 PTFE 中添加碳纤维、石墨烯纤维等,对绝缘特性未见报告。

哈工大曲建俊教授团队摩擦材料基体为聚四氟 乙烯和聚苯酯,填添加稀土类氧化物增摩,摩擦调 节剂为铜粉、纳米金刚石。

兰化所王廷梅研究员团队摩擦材料基体为聚四 氟乙烯,添加芳纶纤维、云母、钛酸钡晶须等增摩 材料,摩擦系数调节剂为铜粉、纳米二氧化硅,功 能调节剂石墨、二硫化钼等。

2.2 铜粉导电机理分析

分析目前应用较多的哈工大和兰化所摩擦材料, 材料中均添加了导电相铜粉或石墨,在铜粉或石墨 颗粒可控、分布均匀的情况下,绝缘特性测试不低 于 500 V/500 MΩ,满足使用要求。 摩擦材料填料中选用市售微米铜粉,粒度为300 目,生产单位为石家庄京元粉末材料有限责任公司, 材料成分及粒度见表1。

规格	化学成分				粒度	松装密度
6 - 6 - 3	Sn	Zn	Pb	Cu	(目)	(g/cm^3)
	5 - 7%	5 - 7%	2-4%	其余	300	3.1-4.0

2.2.1 铜粉显微分析

采用金相显微镜测量铜粉的平均粒径,如图 3 所示。

图3 铜微粒金相显微图

由图 3 可见,铜粉的平均粒径约为 38 μm,最 大粒径 78 μm。微米铜粉原材料设计粒度为 300 目 (理论粒径为 48 μm),经进一步对铜粉进行 300 目 过筛试验,实际约有 10% 重量比的铜粉粒径已大于 300 目,与显微分析结果基本一致。随着摩擦材料 厚度减小,特别是在一定预压力下,铜粉可能出现 堆积连排现象,如图 4 所示。当摩擦材料厚度为 0.2 ±0.05 mm,大约 4 - 6 个铜粉颗粒连排时,厚度便 可达到摩擦材料厚度,导致材料导通,绝缘性能 下降。

图4 摩擦材料内部铜颗粒分布示意图 2.2.2 摩擦材料表面和轴向截面形貌

采用1500 目金相砂纸进行摩擦材料的抛光,表 面形貌如图 5 所示。

图 5 摩擦材料中的团聚粒度

由图 5 可见,摩擦材料中存在超过 0.20 mm 的 团聚尺寸, 0.12 mm ~ 0.17 mm 团聚尺寸占比约为

10%。0.2 mm 以上的铜微粒直接贯穿摩擦片的厚度; 0.12 mm ~0.17 mm 的铜微粒,可能被外电场击穿聚四氟乙烯包裹层后错层贯穿,形成导通。

图 6 为摩擦材料轴向(厚度方向)截面铜粉分布 显微图像,铜粉分布与表面差异不大,也反映出材 料混合均质性良好。

图6 摩擦材料轴向截面铜粉分布

综上分析,摩擦材料中铜粉的存在,必然存在 绝缘特性降低的风险,对后续电机工艺提出了严格 的控制要求。

3 控制策略

3.1 减小铜粉粒径

原材料铜粉的平均粒径为 38 μm,摩擦材料厚 度为 0.2 ±0.02 mm,大约 5 个铜微粒连排时,便可 达到摩擦材料厚度,导致材料导通。减小铜粉粒径, 若选择平均粒径为 10 μm 的铜粉,则需约 18 个以上 铜微粒。同时,材料制备时经过高速搅拌处理,混 合均匀,达到聚四氟已烯包裹铜粉的效果,不易出 现铜微粒连排的现象,从而提高了摩擦材料的绝缘 性,如图 7 所示。

选择小粒径铜粉可以改善复合材料的结构强度, 对摩擦学性能也是有益的,只是成本有所增加。

图 7 优化粒径后摩擦材料中铜颗粒分布示意图

3.2 适当增加粘接层厚度

通常摩擦材料与转子粘接层厚度为 15 μm~25 μm,将胶层厚度提高到为 20 μm~30 μm,若选择 铜粒径 < 胶层厚度,即铜粒径 < 20 μm,即使铜颗粒 渗入胶层,也可保证铜颗粒不与转子接触,即通过 胶层绝缘。选用平均粒径 10 μm 的铜粉,其分散效 果模拟图如图 8 所示。

图 8 铜颗粒渗入胶层示意图

3.3 降低摩擦材料表面粗糙度

为增加粘接强度,通常对转子圆盘使用 180 砂 纸进行拉毛处理,其表面粗糙度 Rz 为 7 μm ~ 8 μm, 见图 9;对摩擦材料同样使用 180 砂纸进行拉毛,其 表面粗糙度 Rz 为 18μm ~ 25μm,见图 10。转子与摩 擦材料粘接时形成了如图 11 的啮合结构,表面粗糙 高,摩擦材料与转子毛刺接触增多,绝缘特性下降。

图 9 使用 180 目砂纸拉毛的转子圆盘表面粗糙度

图 10 使用 180 目砂纸拉毛的摩擦材料表面粗糙度

图 11 转子与摩擦材料接触示意图

摩擦材料和转子的粘接面的粗糙度 Rz 均小于10 μm, 胶层厚度在 20-30 μm, 可以保证摩擦材料与 转子的凸峰不接触,摩擦材料与转子都直接与胶层 接触,提高摩擦材料粘结胶层的绝缘性。

降低摩擦材料表面粗糙度后,可以考虑对摩擦 材料表面进行萘钠处理,提高材料的表面活性,增 强粘接力。

3.4 无铜化处理

去掉铜粉填料,采用其他填料来替代,从根本 上解决绝缘特性问题,成为摩擦材料发展的方向。

3.5 转子绝缘设计

采取类似定子绝缘隔离的方法,将转子与输出 轴使用绝缘材料隔离,同样可从根本上解决电机电 气绝缘的问题。但基于转子与输出轴接口多样,结 构设计比较复杂,目前应用很少。

4 优化后制备摩擦材料验证情况

通过控制铜粉粒径、增加粘接胶层厚度、减小 摩擦片表面粗糙度,使用萘钠溶液处理摩擦材料表 面,按照正常工艺装配 USM45 型超声电机,电机编 号 DJ1、DJ2 为原摩擦材料装配的电机,电机编号 DJ3、DJ4 为优化后摩擦材料装配的电机。

4.1 绝缘特性评估

电机静摩擦力矩 0.5 Nm ~ 0.6 Nm,测试电机 com 端对壳体绝缘电阻,即包括定、转子绝缘电阻 的总电阻,因定子齿槽的存在,测试时需转动转子 1.92°,共计测量 4 次,测试数据见表 2。

表 2 摩擦材料优化工艺前后装配电机绝缘特性测试情况

转子转动不同位置电机 com 端对转轴绝缘						
电机	电阻(DC500V/2 min)(GΩ)					
编号	静摩擦力	٥°	± 1 02°	± 1.02°	± 1.02°	
	矩/Nm	0	+ 1. 92	+1.92	+ 1. 92	
DJ1	0.50	0.65	0.62	0.63	0.68	
DJ2	0. 53	0.86	0. 83	0.85	0.88	
DJ3	0.51	26.48	26.33	26.23	26.03	
DJ4	0.56	15.86	17.80	19.65	22.70	

从表2得出,优化后的摩擦材料绝缘特性大幅 提升,由原来的 MΩ级提升到 GΩ级。

4.2 电机性能评估

分别使用优化前后的摩擦材料按照正常工艺装 配电机,对电机转速-转矩、效率-转矩特性进行 测试,其测试情况如图 12 和图 13 所示。

图 13 电机效率 - 转矩曲线

从图 12 和图 13 可以得出,优化前后摩擦材料 装配的电机转速、转矩基本无变化,效率有所下降, 降幅为 17%,是因为铜粉粒径减小后,摩擦材料弹 性模量增加,工作电流增大引起的。

5 结 论

(1)影响电机绝缘特性的主要因素是摩擦材料,通 过改善摩擦材料的绝缘特性可以提升电机的绝缘能力; (2)减小摩擦材料中铜粉的粒径到10微米以下, 适当增加胶层厚度,可有效提升摩擦材料的绝缘 特性;

(3)铜粉作为摩擦材料中增摩材料,颗粒的变小,对电机接触界面的稳定性有益,但导致电机输出效率降低,需要进一步寻找平衡点;

(4)采用萘钠处理方法,减小摩擦材料的粗糙 度,可提升摩擦材料的绝缘强度,同时提升摩擦材料的粘接力。

参考文献

- [1] 赵淳生. 超声电机技术与应用[M]. 北京:科学出版社, 2007:105-106.
- [2] 李将. 纤维粉填充聚合物超声电机摩擦材料的研究[D]. 哈尔 滨:哈尔滨工业大学, 2015:8.
- [3] 曲建俊,闫瑾,宋宝玉.玻璃纤维粉对聚合物基超声电机摩擦
 材料性能的影响[J]. 润滑与密封,2018,43(1):2.
- [4] T Ishii, K Nakamura, S Ueha, et al. A Wear Evaluation Chart of Friction Materials Used for Ultrasonic Motor [C]. IEEE Ultrasonic Symposium, 1998: 699-702.
- [5] 指田年生. 振动片型和表面波型超声波电机(译)[J]. 压电与 声光, 1985, 7(1): 73-78.
- [6] 奥村一郎. 超音波モータの實用化[J]. 日本音響學會志.
 2001, 57(6): 411-416.
- [7] P Rehbein, J. Wallaschek. Friction and Wear Behaviour of Polymer/Steel and Alumina/Alumina under High-Frequency Fretting Conditions[C]. Wear, 1998, 216: 97-105.

(上接第24页)

化率不同,故障温度范围区间不同,故障时间长度 也不同;随着环境温度升高,电机内部温度与环境 温度达到平衡后,电机表面化霜,电枢电阻恢复正 常,电机可以正常工作运行。

因此,军用武器装备系统中选用有刷直流力矩 电动机,可在方案初期研制阶段考虑系统预热温度 补偿策略,使系统寿命全周期在0℃以上,不存在 低温阶段,进而保证系统运行的可靠性。

参考文献

- 唐任远.现代永磁电机理论与设计[M].北京:机械工业出版 社,1997.
- [2] 张文海,梁功勋. 微特电机实用技术问答[M]. 北京: 电子工 业出版社, 2011.
- [3] 王亮.激光通信平台用永磁力矩电机轻型化的关键技术研究 [D].哈尔滨:哈尔滨工业大学,2018.

- [4] 张文海,徐丽. 永磁直流力矩电动机起动电压研究[C]. 第十二届中国小电机技术研讨会论文集,2007:255-257.
- [5] 王静爽,曹尔晔.温度变化对电机危害分析及解决途径[J].
 电机与控制应用,2009(8):42-45.
- [6] 吴彦灵,祝耀昌. 军用装备实验室环境试验方法第3部分:高 温试验[S]. 中国人民解放军总装备部.
- [7] 吴彦灵,祝耀昌. 军用装备实验室环境试验方法第4部分:低 温试验[S]. 中国人民解放军总装备部.
- [8] D A Lightband, D A Bicknell. The Direct Current Traction Motor: Its Design and Characteristics [M]. London, U. K.: Business Books, 1970.
- [9] D Staton, S J Pickering, D Lampard. Recent Advancement in the Thermal Design of Electric Motors [C]. In Proc. SMMA—Fall Tech. Conf., Durham, NC, 2001.
- [10] D Staton, A Boglietti, A Cavagnino. Solving the More Difficult Aspects of Electric Motor Thermal Analysis in Small and Medium Size Industrial Induction Motors [J]. IEEE Trans. Energy Convers., 2005, 20(3): 620-628.
- [11] 陈世坤. 电机设计[M]. 北京: 机械工业出版社, 2000.

反电势均值滤波的无刷直流电机无感控制策略

宋开元^{1,2,3},吕晓东⁴

(1. 浙江大学 工程师学院, 杭州 310015; 2. 国家电网湖州供电公司, 浙江 湖州 313000;

3. 浙江省电机系统智能控制与变流技术重点实验室,杭州 310027;4. 杭州日鼎控制技术有限公司,杭州 311305)

摘 要:针对无刷直流电机低速时反电势波形会产生严重畸变的问题,提出了一种基于改进移动均值滤波器的无刷 直流电机反电势无感控制策略。首先通过 Matlab 对低速时的反电势波形进行离线重构,对比使用了均值滤波的反电 势波形,验证了理论的可行性;其次通过 Simulink 进行仿真对比,验证了该方法在全速域上换相精度的优越性;最 后对均值滤波器的窗口大小选择、中断时间等设计因素对于换相精度的影响进行了深入探讨,并优化了运算量。 Simulink 仿真和离线对比证明了本文所提出的无位置传感器控制方法在无刷直流电机低速运行时具有良好的换相精 度和普遍适用性,具有一定的实用价值。

关键词:无刷直流电机;无位置传感器控制;移动均值滤波;反电势法

中图分类号: TM36 +1; TP273 文献标志码: A 文章编号: 1001-6848(2023)10-0030-09

Position Sensorless Control Strategy of Brushless DC Motors Based on Back EMF Moving Average Filter

SONG Kaiyuan, LYU Xiaodong

(1. Polytechnic Institute of Zhejiang University, Hangzhou 310015, China;

2. State Grid Huzhou Power Supply Company, Huzhou Zhejiang 313000, China;

3. Zhejiang Provincial Key Laboratory of Electrical Machine Systems, Hangzhou 310027, China;

4. Hangzhou Riding Control Technology Co., Ltd., Hangzhou 311305, China)

Abstract: Aiming at the problem that the back EMF waveform of the BLDC motor will be seriously distorted at low speed, a sensorless control strategy for the back EMF of the BLDC motor based on an improved moving average filter was proposed. Firstly, the back-EMF waveform at low speed was reconstructed offline by Matlab, and the back-EMF waveform after using the mean filter was compared to verify the feasibility of the theory; secondly, the simulation comparison was performed by Simulink, which showed the superiority of the method on commutation accuracy in the full-speed domain. Finally, the influence of design factors such as window size selection and interruption time of the mean filter on the commutation accuracy was discussed in depth, and the calculation amount was optimized. Simulink simulation and offline comparison prove that the position sensorless control method proposed in this paper has good commutation accuracy and universal applicability when the brushless DC motor runs at low speed, and has certain practical value.

Key words: brushless DC motor; position sensorless control; moving average filter; back EMF method

0 引 言

现有的无刷直流电机反电势无感控制策略大多 通过三相低通滤波器、中性点重构电路来得到反电 势, 文献[1]提出了利用 DSP 对由低通滤波器造成 的延迟进行补偿,弥补了由低通滤波器的相移带来 的无刷直流电机无感运行范围的缩减,在 600 r/min 至 3500 r/min 实现了对于电机的精确换相。但是没 有探讨更低转速时的状况。文献[2]提出了一种无 位置传感器无刷直流电机无硬件滤波的转子位置检

收稿日期: 2023-01-17, 修回日期: 2023-03-22

基金项目:国家自然科学基金 (NSFC-51837010) (重点项目)资助。

作者简介: 宋开元(1996), 男, 硕士研究生, 研究方向为无刷直流电机无位置传感器控制。

吕晓东(1970),男,博士,研究方向为伺服电机驱动。

测方法,利用软件滤除 PWM 开关噪声干扰与换相 时电流续流噪声。虽然无需外部硬件电路滤波,但 是该方法受限于 PWM 调制方式的影响并且其性能与 中断频率有关、软件计算量大。

由于在低速时反电势波形会产生严重畸变,过 零点附近有抖动和纹波,从而会使换相信号产生多 次误跳变,造成误导通和换相失败,电机抖振和堵 转。反电势波形随着转速降低畸变愈发严重这种现 象是电机固有的,无法改变,限制了反电势无感控 制方法的转速范围和带载能力。

当然也有一些其他的利用反电势来进行换相控 制的策略,比如:文献[3]提出使用扩展卡尔曼滤 波观测器对于线反电势进行观测,利用线反电势获 取换相信号,但是该方法需要计算矩阵的迭代,运 算量大,且系统噪声和测量噪声的选取对于收敛速 度有影响,但是这两个参数不易得到,此外论文中 依旧没有讨论转速低于 600r/min 时的情况。文献 [4]设计了带通滤波器来对电机端电压进行滤波, 滤除低频分量和高频分量,取得了较好的换相精度, 但是带通滤波器的设计较为困难:反电势稳定时间 长、难以在一定频率下取得良好滤波效果。

目前电机采用反电势法无感控制策略的转速下 限通常在额定转速的5%左右,低于这一下限值的 反电势法无感控制策略很少实现,更不必说低速带 载能力了。

文献[5]提出了一种新型的电机反电势检测电路,根据电机速度调节三极管 PWM 信号占空比,在高速时占空比线性增大,在低速时占空比线性减小,使得反电势采样电路上的电压通过三极管斩波控制到合理范围内,能有效地改善在极限速度时反电动势过零检测的效果。设计的高压电机反电动势过零检测电路可以保证检测反电势过零点的可靠性,使电机能在更宽转速范围内稳定运行。但是该技术方案采用大量外围硬件电路进行滤波处理,接线复杂、可靠性低、占用空间大,较难加以实际应用。

本文提出一种基于改进移动均值滤波的反电势 无感控制策略,对得到的反电势波形进行移动均值 滤波后再过零比较,使得滤波后的反电势波形在低 速下依旧十分清晰,使采用所提方法进行无感控制 的无刷直流电机在额定转速的3%以下还能够平稳 运行,拓宽了反电势法无感控制的转速范围和增强 了带载能力。

1 电机模型

三相无刷直流电机多采用三相星形连接、两两导通120°的导通方式,每一时刻(换相瞬间除外)只有两相绕组导通,每相绕组导通120°电角度,每60°电角度换相一次^[6]。

把 B + C - 、B + A - 、C + A - 、C + B - 、A + B - 、A + C - 分别命名为状态1、2、3、4、5、6,按 照上述顺序进行通电,由于定转子磁场相互作用, 电机可以稳步运行。

三相无刷直流电机的等效模型如图1所示。

图1 电机等效结构模型

假设三相绕组完全对称,忽略铁耗和涡流的影响,则三相无刷直流电机在自然坐标系下的数学 模型^[7]:

$$\begin{bmatrix} u_{a} \\ u_{b} \\ u_{c} \end{bmatrix} = \begin{bmatrix} r \ 0 \ 0 \\ 0 \ r \ 0 \\ 0 \ 0 \ r \end{bmatrix} \cdot \begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \end{bmatrix} + \begin{bmatrix} L \ M \ M \\ M \ L \ M \\ M \ M \ L \end{bmatrix} p \begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \end{bmatrix} + \begin{bmatrix} e_{a} \\ e_{b} \\ e_{c} \end{bmatrix} + \begin{bmatrix} u_{n} \\ u_{n} \\ u_{n} \end{bmatrix}$$
(1)

式中, u_a 、 u_b 、 u_c 为三相绕组的端电压(V); i_a 、 i_b 、 i_c 为三相绕组的相电流(A); e_a 、 e_b 、 e_c 为三相绕组 的反电势(V); u_n 为中性点电压(V);L为相绕组自 感(H);M为每两相绕组间的互感(H);p为微分算 子,p=d/dt。

隐极电机转子磁阻不随转子位置变化而变化, 故定子绕组的自感和互感均为常值。则有:

$$i_{\rm a} + i_{\rm b} + i_{\rm c} = 0 \tag{2}$$

而且

$$Mi_{\rm a} + Mi_{\rm b} = -Mi_{\rm c} \tag{3}$$

将上述两式代入式(1),可得:

$$\begin{aligned} u_{a} \\ u_{b} \\ u_{c} \end{bmatrix} &= \begin{bmatrix} r & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & r \end{bmatrix} \cdot \begin{bmatrix} r_{a} \\ i_{b} \\ i_{c} \end{bmatrix} + \begin{bmatrix} L - M & 0 & 0 \\ 0 & L - M & 0 \\ 0 & 0 & L - M \end{bmatrix} p \begin{bmatrix} r_{a} \\ i_{b} \\ i_{c} \end{bmatrix} + \begin{bmatrix} r_{a} \\ i_{b} \\ i_{c} \end{bmatrix} + \begin{bmatrix} e_{a} \\ e_{b} \\ e_{c} \end{bmatrix} + \begin{bmatrix} u_{n} \\ u_{n} \\ u_{n} \end{bmatrix}$$
(4)

令
$$L - M = L_{\delta}$$
, 则得:

$$\begin{bmatrix}
u_{a} \\
u_{b} \\
u_{c}
\end{bmatrix} = \begin{bmatrix}
r & 0 & 0 \\
0 & r & 0 \\
0 & 0 & r
\end{bmatrix} \cdot \begin{bmatrix}
i_{a} \\
i_{b} \\
i_{c}
\end{bmatrix} + \begin{bmatrix}
L_{\delta} & 0 & 0 \\
0 & L_{\delta} & 0 \\
0 & 0 & L_{\delta}
\end{bmatrix} p \begin{bmatrix}
i_{a} \\
i_{b} \\
i_{c}
\end{bmatrix} + \begin{bmatrix}
u_{n} \\
u_{n} \\
u_{n}
\end{bmatrix}$$
(5)

在运行过程中,任一时刻仅两相绕组导通,另 一相悬空,悬空相绕组用来进行反电势过零检测, 由式(5)可得:

$$u_x = e_x + u_n \tag{6}$$

式中, x 为悬空相,即未导通相。从式(6)可以看 出,只需要求得未导通相绕组端电压与电机中性点 的电压就可以求出反电势的过零点。电机的换相时 刻发生在反电势过零点延迟 30°电角度的地方^[8]。

但在大多数情况下,电机的中性点不会引出, 而且端电压内包含很多 PWM 斩波信号,还有因续流 引起的干扰信号,为了去除这些信号通常会将端电 压信号经过一个低通滤波器。然后硬件重构电机的 中性点,并对低通滤波器带来的相位延迟和幅值变 化进行调整。

常见的低通滤波器和中性点重构电路如图2和 图3所示。

图 3 中性点重构电路 低通滤波器带来的幅值和相位变化如:

$$|A(\omega)| = \frac{R_1}{\sqrt{(R_0 + R_1)^2 + (R_0 R_1 C_1 \omega)^2}}$$
(7)

$$\varphi(\omega) = -\arctan\frac{R_0 R_1 C_1 \omega}{R_1 + R_0}$$
(8)

中性点电压的大小为

$$u_n = (u_a + u_b + u_c) / 3$$
 (9)

2 方案提出

反电势在电机低速运行时畸变严重,包含了大 量毛刺和纹波,如图4所示。但是注意到这些毛刺 和纹波都是在一个基准值上下浮动,畸变波形还是 大致反映了反电势波形的轮廓。由于理想反电势波 形在过零处是线性的,为解决上述问题,对经过低 通滤波器的反电势波形采用图像增强中的移动均值 滤波器进行滤波处理。

图4 转速为150 r/min 时 back EMF 和低通滤波后的反电势图 均值滤波是一种线性滤波方法,通过周边邻域 像素的加权平均值来替换有噪像素^[9]。基本原理是 在图像上给目标像素提供一个模板,该模板包括了 其周围的临近像素,再用模板中的全体像素的平均 值来代替目标像素原来的像素值,从而达到降噪的 目的。它是图像处理中的常用手段,起到平滑图像、 滤去噪声的作用^[10]。

由于反电势波形只有一维变化,故设定一个宽 度固定、沿着时间序列滑动的窗口,取窗内数据的 加权算术平均值作为输出值。设 N 为滑动窗口的宽 度,若 N = 2k + 1,输入、输出分别为 x(n)和 y(n): $y(n) = \sum_{i=-k}^{i=k} \delta(n+i) \cdot x(n+i), \sum_{i=-k}^{i=k} \delta(n+i) = 1$ (10)

式中, i 为领域内元素的序号。考虑到计算复杂性和运算时间的问题,将权重因子 $\delta(n+i)$ 取为窗口长度的倒数,即 $\delta(n+i) = 1/(2k+1)$ 。

一维滑窗均值滤波器,可以通过队列原理进一步提速。

在窗口滑动的过程中,相邻窗口内有大量元素 是重叠的,整个滑动过程可以看成是不断进出"队 列"的过程,如图5所示。

图 5 滑窗滤波的队列提速原理示意图
中点重构

因此, 计算以第 n+1 个数据为中心的窗口内所 有数据的和 S[n+1]可以通过 S[n]与最左 x[n-k]最右 x[n+k+1]的元素得到, k 为滤波器半径, 公 式如下:

S[n+1] = S[n] + x[n+k+1] - x[n-k] (11)

滑窗均值滤波器会带来固定时间的延迟, 可表 示为

$$T_d = (N-1)/2 \times t$$
 (12)

式中,t为窗口持续的时间间隔,N为窗口大小。故 可知总的换相补偿时间为: $T = T_h - T_a - T_a$, 其 中T,是反电势波形过零点延迟30°电角度所对应的 延迟时间, T_a 是低通滤波造成的延时, 对应于式 (8), T_a 是包括软件计算造成的延时等因素在内的 其他延时。

为了验证所提出方案的可行性,在进行 Simulink 仿真之前,对反电动势波形进行了离线均值滤波处 理。图6是在电机转速为90 r/min 左右时经过滑窗均 值滤波处理后的电机反电势波形和未经过滑窗均值滤 波处理而只经过低通滤波得到的反电动势波形。

图 6 经过滑窗滤波的反电势和未滑窗滤波的反电势图

图 6 是在滑窗窗口大小为 200 的情况下(对邻域 内200个数据点进行滤波),经过处理过后的波形与 原波形走势非常吻合,过零点处非常清晰,不存在 多次过零和误跳变的情况,离线处理证明了所提出 的方法存在一定的可行性。

3 Simulink 仿真研究

基于上述提出的反电势移动均值滤波器,进行 Simulink 仿真实验。仿真中电机参数设置如表1所示。

衣 1 电机参数						
参数	参数值					
电压/V	24					
转速/(r/min)	3000					
相电阻/Ω	0. 21					
相电感/mH	0.56					
额定转矩/N・m	0.32					
额定电流/A	5.9					
极对数	2					
转动惯量/kg・mm ²	11.9					

计算

搭建的 Simulink 仿真模型示意图如图 7 所示。

图 7 Simulink 仿真模型示意图

计算

搭建了 Matlab Simulink 无刷直流电机三闭环仿 真模型,利用三段式起动来进行电机起动,并且利 用 PWM-ON 调制方式来进行换相转矩脉动的抑制. 同时为了进一步抑制换相转矩脉动,按照文献[11] 第四章的内容计算滞后换相的角度,并且结合仿真 实际进行合理调整。

在给定转速为3000 r/min、1500 r/min、200 r/min、 100 r/min、70 r/min 时分别进行了基于 Matlab Simulink 的仿真实验, 仿真实验波形如图 8~图 12 所示。

在仿真时间为0.2 s 时切换成无感控制, 0.3 s 时, 突加额定负载 0.32 Nm, 得到如图 8 所示的转 速、转矩波形图,验证了无感控制策略的稳定性。

在给定转速为1500 r/min 的情况下, 仿真时间为 0.2 s 时切换成无感控制运行, 0.3 s 时突加 0.32 Nm 的额定负载,得到如图9所示的转速、转矩波形图。

在给定转速为 200 r/min 的情况下, 仿真时间为 0.2 s 时切换成无感运行, 0.3 s 时突加 0.064 Nm 大 小的负载(1/5的额定负载),得到如图 10 所示的转 速、转矩波形图。

在给定转速为100 r/min 的情况下, 仿真时间为 0.2 s 时切换成无感运行, 0.3 s 时突加 0.04 Nm 大 小的负载(1/8的额定负载),得到如图11所示的转 速和转矩波形图。

在给定转速为70 r/min 的情况下, 空载起动, 仿真时间为0.2 s 时切换成无感控制运行, 0.3 s 时 突加 0.02 Nm 大小的负载(1/16 的额定负载) 仿真总 时长为 0.5 s, 得到的转速和转矩波形图如图 12 所示。

图 8 空载与额定负载下转速给定为 3000 r/min 时转速图

图 12 空载和 1/16 额定负载时转速给定为 70 r/min 转速图

0.2 0.25

1/s

0.3 0.35 0.4 0.45

0.5

0

0.05 0.1 0.15

从上述仿真实验结果可以看出在低速下,所提 出的方法仍然具有一定的带载能力,在较高转速时, 其运行稳定性和带载能力与 Hall 位置传感器控制下 相差无几,符合反电势法的特点。

为了进一步体现换相精度,在不使用换相转矩脉动抑制措施的情况下,仅保留位置闭环进行仿真 实验,采用上桥臂 PWM 斩波,下桥臂互补 PWM, 导通为高电平的 PWM 调制方式,仿真时间设置为 2 s,空载起动,转速稳定在 85 r/min 左右时切换成 无感控制运行(转速达到 50 r/min 即可切换成无感控 制),在 0.5 s时施加一个微小负载,得到的换相信 号与 Hall 信号如图 13 所示(以 A 相为例)。需要说 明的是反电势波形图中, Stator back EMF e_a 代表的 是由 Simulink 电机模块引出(计算得到)的 A 相反电 势波形, EMF 是普通反电势法得到的 A 相反电势波 形, 而 SWF-EMF 代表所提方法得到的 A 相反电势 波形, SWF 是 Sliding Window Filter 的简称。

换相信号图中 Hall effect signal h_a 代表 A 相 Hall 信号, Ta 是所提方法得到的 A 相换相信号, b 相、c 相亦是如此。关于相同图标、图例的含义下 文均是如此,不再赘述。

从仿真实验可知,在该运行状况下,三相换相 信号与 Hall 信号高度吻合,空载时前后沿相差不过 100 μs,换相误差小于 0.5°(0.254°),带载后误差 小于 1.5°(1.32°)。而在不使用移动均值滤波器的 情况下,电机无法带载运行,空载换相误差达到 35.64°,由此可知所提方法降低了 92% 的换相误差。

为了进一步凸显出所提方法改善低速换相精度的 效果,在不采用滑动均值滤波器的情况下在转速为 300 r/min 与 600 r/min 下根据普通反电势法进行无感 控制。仿真时间设置为 3 s, 空载起动,转速稳定在 85 r/min 左右时切换成无感控制运行,在 1.5 s 时施 加一个微小负载,得到换相信号如图 14~图 15 所示。 图中 Variable Time Delay(Delay1, Delay2)代表普通反

图 15 600 r/min 时三相换相信号对比图

从图 14 和图 15 可知,低速情况下,换相误差 较大,300 r/min 时换相误差为 9°左右,600 r/min 时换相误差为 6°左右,且存在多次误跳变。

采用本文所提方法进行无感控制,在同等情况 下仿真得到的反电势波形与换相信号如图 16~图 17 所示。

从图 16 可以算出 300 r/min 时换相误差为 1.17°,相较于普通反电动势法,降低了 85% 以上的 换相误差。而从图 17 可以算出在 600 r/min 时换相 误差为 0.06°,相较于普通反电动势法,降低了 90% 左右的换相误差。

由此可见所提方法可以显著改善低速时的换相 精度,接下来在较高转速时进行仿真实验。

分别在转速为 1500 r/min 和转速为 3000 r/min 时利用所提方法和普通反电动势法进行无感控制仿 真实验,仿真时间设置为 3 s,在 1.5 s 时施加一个 微小负载。得到如图 18~图 21 所示的反电动势波形 与换相信号图。

采用普通反电动势法进行无感控制,得到的仿 真实验结果如图 18~图 19 所示。

图 18 1500 r/min 时反电势波形与三相换相信号对比图

· 36 ·

图 19 3000 r/min 时反电势波形与三相换相信号对比图

从图 18 可得转速为 1500 r/min 时换相误差为 0.42°,从图 19 可知转速为 3000 r/min 时换相误差 为 0.29°。这符合反电势法的特点:转速较高时过零 点换相较为准确,转速较低时反电势畸变严重,无 法得到准确的过零点。

使用所提方法进行无感控制,得到的仿真实验 结果如图 20~图 21 所示。

从图 20 可算得,在转速为 1500 r/min 时使用所 提出的方法得到的换相误差为 0.046°,从图 21 可知 在转速为 3000 r/min 时使用所提出的方法得到的换 相误差为 0.073°。相较于使用普通反电动势法得到 的换相信号,误差分别降低了 90% 左右和 75% 左右。

图 20 1500 r/min 时反电势、三相换相信号对比图

图 21 3000 r/min 时反电势、三相换相信号对比图

上述一系列仿真表明,在全速域下运行时,随 着转速的变化,本文所提方法取得的换相精度误差 可以控制在 2°以内,且该方法不受 PWM 调制方式 的影响。

为进一步验证该方法的性能和普遍适用性,对 于滑窗窗口大小和仿真中相应代码的中断执行时间 进行调整,并且选择另一套电机参数进行仿真实验, 以换相信号与 Hall 信号的误差大小来说明性能的 优劣。

大多数无刷直流电机的额定电压范围是 12~48 V, 故选择的另一套电机的参数如表 2 所示。仿真中阻尼 系数为 0.00047 N·m·s,摩擦系数为 0.01 N·m。 表格中反电势系数是线电压峰值。

表2 电机参数

参数	参数值
电压/V	48
转速/(r/min)	3000
相电阻/Ω	0.06
相电感/mH	0.1
反电势系数/(V/(r/min))	0. 0158
额定功率/W	700
极对数	2
转动惯量/(kg・mm ²)	4

(1) 滑窗窗口大小的影响

转速 90 r/min 左右,在滑窗窗口大小为 400, 中断周期为每 8 µs 执行一次换相位置计算,施加负 载时间为 1.1 s,仿真时长为 2 s 的情况下得到的换 相信号对比图如图 22 所示。

图 22 三相换相信号对比图

由图 22 知, 空载换相误差小于 0.5°, 带载换相误差小于 1.5°。

转速 90 r/min 左右,滑窗窗口大小为 200,其 余条件均保持不变时仿真得到的换相信号对比图如 图 23 所示。

图 23 三相换相信号对比图

从图 23 可以算得, 空载时和带载时换相误差几 乎没有变化, 为了避免偶然性, 又在其余情况下进 行了仿真实验对比, 可以得到相同的结果, 只是电 机暂态时间会稍稍加长。

设置滑窗窗口大小为100,并且将仿真时间延长 至3s,加载时间调整为1.5s,其余条件保持不变 时,仿真得到的换相信号对比图如图24所示。

图 24 三相换相信号对比图

从图 24 可知,在空载运行时换相误差大约为 0.4°,在带载情况下换相误差超过 10°(10.72°)。虽 然误差较大,但是电机还是可以运行。

为了进一步凸显出所提出方法的优越性,使用 不加滑动均值滤波器的普通反电势法进行无感控制, 得到的换相信号如图 25 所示。

从图 25 可知, 普通反电势法在同转速下无法对

电机进行准确换相和实现平稳控制,带载情况下电机无法运行。

图 25 普通反电势法得到的三相换相信号对比图

结论:从仿真实验可知,使用了滑动均值滤波 器的反电势法可以在窗口大小设计合适的情况下拓 宽反电势法无感控制的转速范围和增强带载能力, 而且窗口大小的设计具有较大范围的可选择性。窗 口大小在一定范围内均具有较好的控制效果,至于 窗口大小设计的具体选择依据将在本文后续给出。

(2)代码中断时间的影响

滑窗滤波器的实现是基于 S-Function 模块,把 经过低通滤波器和中性点重构电路作差得到的反电 势波形送入 S-Function 模块滤波,故 S-Function 模块 的中断时间大小会对滤波效果造成影响。

转速 90 r/min 左右,设置滑窗窗口大小为 200, 中断时间为 0.1 ms,仿真时间为 3 s。在 1.5 s 时施加 一个微小负载,并在保持其余条件不变的情况下进行 仿真实验,得到的换相信号对比图如图 26 所示。

从图 26 可知, 空载运行时换相误差为 1.53°, 带载运行时换相误差为 2°, 此时电机平稳运行。

维持转速不变,将中断时间设置为 500 μs,其 余条件和中断时间设置为 100 μs 时相同,仿真得到 的换相信号对比图如图 27 所示。

从图 27 可算得空载运行时换相误差为 27.7°, 带载时换相误差为 5.2°, 电机可以运行。

中断时间设置为不小于 800 μs 同时保持其余条 件不变, 仿真可得此时换相误差很大, 电机无法正 常运行。

图 27 三相换相信号对比图

由此可见,中断时间的设置直接影响了移动均 值滤波的时间延迟和过零比较的精度,对于电机运 行影响很大。在一定中断时间范围内,中断时间越 长,对于单片机实现的 MCU 性能要求越低,同时又 能保证不错的换相精度和电机运行状态。这体现了 所提方法具有普适性和一定的实用价值。但是超过 一定范围后,延迟和误差会使得电机无法始终精确 维持在反电势过零 30°电角度时换相,从而使运行状 态变差。因此将中断时间设置在合理范围内可以在 成本和性能之间取得较好平衡。

移动均值滤波器滑窗大小和中断时间的选择依 据如下:综合上述仿真实验可知,移动均值滤波器 滑动窗口大小的选择与反电势的频率($f = \frac{pn}{60}$)、低通 滤波器所造成的相位延迟与中断时间的大小有关, 必须使得总的延迟时间为反电势过零 30°电角度所对 应的时间,此外窗口大小还与滤波效果(换相精度) 有关系。同理,中断时间的选择也与上述因素有关。 值得注意的是当转速较高时,反电势对应的周期较 短,低通滤波器造成的延迟较大,可能不足以使补 偿时间 T 为正,这时可以考虑直接使用反电势过零 比较法来控制换相而丢弃滑动均值滤波器或者使用 自适应滑窗滤波器。随着转速升高自动调整滑窗大 小,因为反电势法在电机处于高速时是较为精确的。

4 结 论

本文提出了一种基于移动均值滤波的反电势过 零换相控制策略,改善了反电势法在电机运行时由 畸变带来的纹波、误跳变,可获得较为清晰的反电 势波形,从而提高换相精度。尤其在低速时优势更 为明显,85 r/min 左右的低速时,对比 Hall 信号, 换相误差在 1.5°以内,在 300 r/min 和 600 r/min 时,换相误差降低了 85% 甚至 90% 以上。在尽可能 少地使用硬件的情况下(甚至可以将低通滤波器和中 性点重构电路全部通过软件实现来做到纯软件滤 波),所提方法拓宽了反电势法无感控制的转速范围 (降低至额定转速的 2.3% 左右),使得电机在低速运行时也具有一定的带载能力。在转速较高时,所提方法也能极大地降低换相误差,使得全速域范围内对比 Hall 信号的换相误差被控制在 2°以内。

除此之外,仿真还发现在额定转速 1.7% 左右 时,就可以切换成无感控制,此时还未达到电机的 稳态转速。

在均值滤波中求解每个像素值的加法计算,必 然存在着很多重复的像素加法计算^[12]。

本文使用队列加速的方法来进一步降低运算量, 随着转速升高至一定范围(比如1500 r/min 时),反 电势法达到一定换相精度以后(此时换相误差为 0.42°左右),可以考虑丢弃滑窗均值滤波器以减少 运算负担或改用自适应滑窗均值滤波方式。

对于移动均值滤波器的设计,本文深入探讨了 窗口大小与中断时间及其相关因素对于性能的影响。 在窗口大小设置为100以上,中断时间设置为500 μs 以下时能取得较好滤波效果。

参考文献

- [1] D Arifiyan, S Riyadi. Hardware Implementation of Sensorless BLDC Motor Control To Expand Speed Range [C]. International Seminar on Application for Technology of Information and Communication, 2019: 476-481.
- [2] 王大方,于知杉,金毅,等.无位置传感器无刷直流电机无硬件滤波转子位置检测方法[J].电工技术学报,2017,32 (19):71-80.
- [3] 徐会风,苏少平,杜庆诚,等.基于扩展卡尔曼滤波观测器的 无刷直流电机无位置传感器控制系统研究[J]. 微电机,2020, 53(5):31-39,50.
- [4] 刘宁庄,李中军,刘华旭.一种带通滤波器在无位置传感器转 子检测中的应用[J]. 微电机,2014,47(4):40-42,48.
- [5] 刘全龙,周奇勋,王茜,等. 矿用无位置无刷直流风机转子位
 置检测研究[J].西安科技大学学报,2022,42(1):168-175.
- [6] 王永. "反电势法"无刷直流电机控制系统研究[D]. 南京:东 南大学, 2004.
- [7] 李志雄.无刷直流电机优化电流控制技术研究[D].武汉:华 中科技大学,2021.
- [8] 李天舒,刘军.反电势法控制无刷直流电动机实验研究[J]. 微电机,2008(1):49-51.
- [9] M Mahmoudi, G Sapiro. Fast Image and Video Denoising Via Nonlocal Means of Similar Neighborhoods [J]. IEEE Signal Processing Letters, 2005, 12(12): 839-842.
- [10]郑佳慧,俞晓迪,赵生妹,等.基于均值滤波的关联成像去噪[J].光学学报,2022(8):1-15.
- [11] 赵继成. 无刷直流电机转矩脉动抑制与无位置传感器控制研究[D]. 哈尔滨:哈尔滨工程大学, 2020.
- [12] 姜庆胜,李研彪,计时鸣. 轴缺陷检测中的快速均值滤波应用 研究[J]. 浙江工业大学学报,2021,49(1):82-87.

考虑摩擦的电动舵机控制问题研究

王康昊,王儒昊

(上海交通大学 船舶海洋与建筑工程学院,上海 200240)

摘 要:导弹电动舵机系统是一种复杂的传动系统,其关节处存在的摩擦效应会导致系统输出出现运动不平稳、输 出波形畸变等现象,严重影响舵面控制精度。针对考虑摩擦的舵机系统控制问题进行研究。首先,基于系统约束关 系和动量定理,给出一种基于关节坐标的建模方法。然后,基于对系统摩擦的分析,将关节摩擦力分解常数项,线 性时变项和非线性时变项,并根据自抗扰方法设计舵机系统运动控制。数值实验结果表明该文章设计的控制器具有 较好的控制性能。

关键词:电动舵机;摩擦;关节坐标;自抗扰 中图分类号:TP273 ______文献标志码:A _____文章编号:1001-6848(2023)10-0039-04

Dynamic Modeling and Analysis of Steering Gear System Considering Friction

WANG Kanghao, WANG Ruhao

(School of Naval Architecture, Ocean & Civil Engeering, Shanghai Jiaotong University, Shanghai 200240, China)

Abstract: The missile electric steering gear system is a complicated transmission system. The friction effect at the joints of the system will lead to the instability of the output motion and the distortion of the output waveform, which will seriously affect the control accuracy of the rudder surface. The control problem of steering gear system considering friction was studied in this paper. Firstly, based on the system constraint relation and momentum theorem, a modeling method based on joint coordinates was presented. Then, based on the analysis of the friction of the system, the joint friction was decomposed into constant terms, linear time varying terms and nonlinear time varying terms, and the motion control of the steering gear system was designed according to the active disturbance rejection method. The numerical results show that the controller designed in this paper has better control performance.

Key words: electric steering gear; friction; joint coordinates; active disturbance rejection

0 引 言

舵机系统是导弹等航空飞行器上重要的伺服机 构系统,其通过改变飞行器舵面改变作用于飞行器 表面的空气动力布局,从而实现对飞行器的飞行姿 态和制导轨迹的控制。作为一种典型闭环多关节传 动机构,其传动关节存在的摩擦力对舵机系统的控 制性能有非常大的影响。在电动舵机控制系统中, 由于非线性摩擦环节的存在,伺服系统的动态性能 和静态性能会受到较大影响。主要表现为低速时出 现爬行现象,稳态时出现较大的静态误差,或出现 极限环振荡现象,并且由于存在变化的静态摩擦, 舵机在速度为零值附近运动不平稳、输出波形畸

收稿日期: 2023-05-09, 修回日期: 2023-06-11 基金项目: 航空科学基金(201901057001) 作者简介: 王康昊(2001), 男,硕士研究生,研究方向为多体系统动力学。

变^[1-2]。为了一步提升电动舵机性能,对考虑摩擦的 控制问题进行研究是十分必要的。

由于摩擦是一种非线性的、复杂的、并且有不确定特性的自然现象,使得摩擦学对于摩擦产生的物理过程的了解还只停留在定性认识阶段,目前还不能通过数学方法对摩擦产生的过程进行准确的描述。目前使用较广的摩擦模型分为两类。一类是经典静态模型,有库伦摩擦模型、Stribeck 摩擦模型^[3]、Karnopp模型^[4]等;另一类是动态摩擦模型,主要有:Dahl模型^[5]、GMS模型^[6]、LuGre模型等^[7]。与静态模型相比,动态模型因其连续特性好能更真实地描述摩擦行为,已经愈发广泛的被应用到了摩擦补偿技术之中。其中,Canudas de Wit 等^[8]

通讯作者:王儒昊(1997),男,博士研究生,研究方向为多体系统动力学。

提出 LuGre 模型是目前较为完善,也是最有效的摩 擦模型。该模型精确地描述了摩擦过程复杂的静态 和动态特性,如爬行现象、极限环振荡、滑前变形、 摩擦记忆、变静摩擦、及静态 Stribeck 曲线等。刘 晓琳和谢孟岑使用 LuGre 模型描述关节摩擦,并对 摩擦辨识和摩擦补偿问题进行了研究^[9]。但由于没 有更全面的考虑系统的动力学特性,其普适性存在 一些难点。

本文针对考虑摩擦的电动舵机控制问题进行了 研究。首先,我们根据电动舵机的传动特性给出了 用于控制器的简化动力学模型。然后,将摩擦对系 统的影响分为线性项和非线性项,其中线性项用库 伦摩擦表达,并作为补偿项添加到控制系统中,非 线性项作为扰动项考虑。为抑制摩擦非线性项对控 制结果的影响,本文采用自抗扰控制方法设计舵机 控制器,并融合神经网络对自抗扰控制的控制参数 进行调整。数值实验表明,本文所使用的控制策略 可以有效的抑制摩擦的影响,可以获得较高的控制 精度。

1 舵机系统简化动力学模型

由于传动系统中包含大量的零部件,结构复杂, 为了便于对模型进行后续的分析研究,首先建立起 传动系统的简化模型。以某型滚珠丝杠式电动舵机 为研究对象,其传动系统主要由两部分组成,分别 是由齿轮副和滚珠丝杠副构成的减速机构,以及由 拨叉、舵轴组成的输出机构。忽略轴承等连接件, 传动系统的结构图如图1所示。

为方便建立动力学模型,图1系统可简化为图2 的传动关系图。图中 B_1 和 B_2 分别代表齿轮1和齿轮2,他们转动角度分别为 α_1 和 α_2 ,节圆半径分别为 R_1 和 R_2 。 B_3 为拨叉,它的转动角度为 α_3 。丝杆的转动比为t,丝杆轴线距离拨叉转动中心的距离为h。根据传动机构的几何关系,可得如下约束方程

$$\phi_1(\alpha_1, \alpha_2, \alpha_3) = R_1\alpha_1 + R_2\alpha_2 = 0 \tag{1}$$

 $\phi_2(\alpha_1, \alpha_2, \alpha_3) = t\alpha_2 + h \tan \alpha_3 = 0$

令 B₁ 和 B₂ 之间的相互作用力为 F₁, B₂ 和 B₃ 之间 的相互作用力为 F₂, 根据动量定理可建立系统动力 学方程为

$$J_{1} \ddot{\alpha}_{1} + F_{1}R_{1} + M = 0$$

$$J_{2} \ddot{\alpha}_{2} - F_{1}R_{2} + F_{2}t/(2\pi) = 0 \qquad (2)$$

$$J_{3} \ddot{\alpha}_{3} - F_{2}h = 0$$

式中, J_i 为 B_i 的转动惯量。

式(1)对时间求一,二阶导数可得速度和加速 度约束方程为

$$\dot{\phi}_{1}(\alpha_{1}, \alpha_{2}, \alpha_{3}) = R_{1} \dot{\alpha}_{1} + R_{2} \dot{\alpha}_{2} = 0$$

$$\dot{\phi}_{2}(\alpha_{1}, \alpha_{2}, \alpha_{3}) = t \dot{\alpha}_{2} + h \sec^{2} \alpha_{3} \dot{\alpha}_{3} = 0$$

$$\ddot{\phi}_{1}(\alpha_{1}, \alpha_{2}, \alpha_{3}) = R_{1} \ddot{\alpha}_{1} + R_{2} \ddot{\alpha}_{2} = 0$$

$$\ddot{\phi}_{2}(\alpha_{1}, \alpha_{2}, \alpha_{3}) = t \ddot{\alpha}_{2} + (4)$$

 $h(\sec^2\alpha_3 \ddot{\alpha}_3 + 2\sec^2\alpha_3\tan\alpha_3 \dot{\alpha}_3^2) = 0$ 将式(3)代入式(1),可得

$$\left(J_{1} - \frac{J_{2}R_{1}}{R_{2}^{2}} + \frac{J_{3}t^{2}R_{1}^{2}}{R_{2}^{2}2\pi\operatorname{sec}^{2}\alpha_{3}h^{2}}\right)\ddot{\alpha}_{1} - \frac{2J_{3}tR_{1}\tan\alpha_{3}\dot{\alpha}_{3}^{2}}{R_{2}2\pi h} + M_{1} = 0$$
(5)

将式(1)和式(3)代入式(5),可得电动舵机的 动力学方程:

$$\left(J_{1} - \frac{J_{2}R_{1}}{R_{2}^{2}} + \frac{J_{3}t^{2}R_{1}^{2}}{R_{2}^{2}2\pi\operatorname{sec}^{2}\alpha_{3}h^{2}}\right)\ddot{\alpha}_{1} - \frac{2J_{3}t^{3}R_{1}^{3}\alpha_{1}\dot{\alpha}_{1}}{R_{2}^{1}2\pi h(h^{2}R_{2}^{2} + t^{2}R_{1}^{2}\alpha_{1}^{2})} + M_{1} = 0$$

$$(6)$$

2 舵机系统摩擦力分析

对于图 2 所示系统,系统摩擦包含齿轮 B₁ 旋转 关节摩擦力矩 T_1 ,齿轮 B₂ 旋转关节摩擦力矩 T_2 , 丝杆摩擦力矩 T_3 ,以及拨叉旋转关节摩擦 T_4 。如将 摩擦分为线性项和非线性项的话,则 T_1 和 T_4 线性 项的线性项是不变的, T_2 和 T_3 的线性项是时变的, 与 $\ddot{\alpha}_2$ 有关,也就是与 $\ddot{\alpha}_1$ 。基于以上分析并采用 LuGre 描述摩擦特性,我们可以将系统摩擦力的贡 献汇总表达为 $T = C + F(\ddot{\alpha}_1) + F(\dot{\alpha}_1, \ddot{\alpha}_1, \gamma)$ (7) 式中, C 为总摩擦力矩与 T_1 和 T_4 有关常数项, $F(\ddot{\alpha}_1)$ 为总摩擦力矩与 T_2 和 T_3 有关线性时变项, $F(\dot{\alpha}_1, \ddot{\alpha}_1, \gamma)$ 代表与总摩擦力矩与 T_1, T_2, T_3, T_4 非线性项的有关的部分。在总摩擦力矩中, C 项本 质是库伦摩擦力,其可通过正压力和摩擦系数相乘 获得,可看作是已知项。总摩擦力矩的 $F(\ddot{\alpha}_1)$ 和 $F(\dot{\alpha}_1, \ddot{\alpha}_1, \gamma)$ 两项是未知项。在控制过程中, C 可 采用摩擦方式来消除其带来的不利影响,而 $F(\ddot{\alpha}_1)$ 和 $F(\dot{\alpha}_1, \ddot{\alpha}_1, \gamma)$ 需要采用其他手段来处理。在本 文研究中,我们将采用自抗扰控制方法消除它们的 不利影响。具体细节请详见下一章节。

3 控制系统设计

$$\left(J_{1} - \frac{J_{2}R_{1}}{R_{2}^{2}} + \frac{J_{3}t^{2}R_{1}^{2}}{R_{2}^{2}2\pi\operatorname{sec}^{2}\alpha_{3}h^{2}}\right)\ddot{\alpha}_{1} - \frac{2J_{3}t^{3}R_{1}^{3}\alpha_{1}\dot{\alpha}_{1}}{R_{2}^{1}2\pi h(h^{2}R_{2}^{2} + t^{2}R_{1}^{2}\alpha_{1}^{2})} + M - C - f = 0$$

$$(8)$$

其中, $f = F(\ddot{\alpha}_1) + F(\dot{\alpha}_1, \ddot{\alpha}_1, \gamma)$ 是未知, 从控制的角度可将二者看作非线性扰动。为了抑制两者对系统控制结果的影响,本文采用自抗扰控制方法设计舵机控制器。自抗扰控制方法可看作是一种基于扩张观测器的现代控制方法,因扩张观测器具有更好的非线性扰动预测能力,因此对于含有非线性摩擦特性的系统具有更好的抗干扰能力。

3.1 自抗扰控制器

自抗扰控制器结构如图 3 所示。 θ_0 为系统输入 的转角命令值; C(s) 为位置控制器,采用经典 PD 控制器; G(s) 为被控对象的传递函数。自抗扰控制 器的主要原理是:当系统有外部干扰输入时,系统 实际对象和参考模型均有输出,将实际输出与参考 模型输出进行作差,将输出差值进行等效处理后, 反馈至输入端,实现对干扰的抑制。这个过程看作 是通过误差完成对干扰的估计,并将其补偿到控制 力矩中。扰动观测器(disturbance observer, DOB)是 自抗扰控制器的核心部分,其将摩擦力矩非线性项 和载体姿态扰动等外部所有干扰因素,看作为一个 扩张的状态变量,通过对扰动观测器的合理设计, 实现对"总扰动"的观测和估计,实现对总扰动的 补偿。

$$\begin{cases} \dot{x}_{1} = x_{2} \\ \dot{x}_{2} = Q^{-1} (P + x_{3} + b_{0}u) \\ \dot{x}_{3} = f \\ y = x_{1} \end{cases}$$
(9)

其中, 状态 x_1 表示角度; 状态 x_2 表示角速度; $Q = J_1 - \frac{J_2 R_1}{R_2^2} + \frac{J_3 t^2 R_1^2}{R_2^2 2 \pi \sec^2 \alpha_3 h^2}$; $P = \frac{2J_3 t^3 R_1^3 \alpha_1 \dot{\alpha}_1}{R_2^1 2 \pi h (h^2 R_2^2 + t^2 R_1^2 \alpha_1^2)}$; 扩张状态 x_3 表示干扰量, 其对应的扩展状态观测 器为

$$\begin{cases} e_1 = z_1 - y \\ \dot{z}_1 = z_2 - l_1 e_1 \\ \dot{z}_2 = z_3 - l_2 e_1 + bu \\ \dot{z}_3 = -l_3 e_1 \end{cases}$$
(10)

式中, *z*₁、*z*₂、*z*₃分别为扩张状态 *x*₁、*x*₂、*x*₃的观测 量,实现对扩张状态的估计。

3.2 PD 控制器设计

在本文的研究中, 舵机控制系统主要外环 PD 控制器和内环的自抗扰控制器构成。PD 控制器通过控制误差生成控制力, 自抗扰控制器通过期望与预测的偏差生成控制力补偿量。上一小节给出了自抗扰控制的设计过程,本小节将给出 PD 控制的设计过程。

控制系统的总输出可表示为

 $u = u_0 / b - z_3 / b_0 + C / b \tag{11}$

式中, u_0 为带摩擦补偿的 PD 控制器输出,其表达 式为

$$=K_{\rm P}e - K_{\rm D} \dot{e}$$
(12)

式中, $K_{\rm p}$ 为比例系数, $K_{\rm D}$ 为微分系数,e为位置跟踪误差。

4 数值实验

本文将采用数值实验的方式验证本文控制方策 略在考虑 LuGre 非线性摩擦模型的有效性。数值实 验算例分别为控制系统响应阶跃信号和正弦信号两 种激励。仿真过程 LuGre 摩擦模型参数鬃毛刚度 σ_0 和鬃毛阻尼 σ_1 分别为 1 × 10³ 和 10, Stribeck 速度为 0.05 m/s, 粘性系数为 0.1。舵机传动部件的转动惯量 J_1, J_2, J_3 分别是 0.1 kg/m², 0.3 kg/m², 0.2 kg/m²。 舵机系统的响应结果分别如图 4、图 5 所示。观察图 4 结果可知,当仅采用 PD 控制方法时,舵机系统响 应存在较为明显的超调现象。当采用自抗扰控制方 法时,超调现象得到了明显的抑制,且更快到达指 定角度。观察图 5 结果可知,自抗扰控制方法相较 PD 控制方法具有更好的正弦信号跟踪精度。

5 结 论

导弹舵机系统一种高精密机械系统,其关节处 摩擦力对导弹的控制精度有着极大的影响。本文针 对考虑关节摩擦的导弹舵机系统控制问题,首先给 出用于控制器设计动动力学模型,然后介绍了一种 新的关节摩擦的描述方式,既将关节摩擦分解为常 值项、线性时变项和非线性时变项。然后在此基础 之上,基于自抗扰方法设计了导弹舵机控制器。数 值实验结果表明,本文研究所设计的控制器具有非 常好的控制性能,能有效抑制摩擦对控制精度的 影响。

参考文献

- [1] 苏翀. 飞行器电动舵机设计与研究[D]. 上海: 上海交通大学, 2013.
- [2] Armstrong-Hélouvry B, Dupont P, De Wit C C. A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction[J]. Automatica, 1994, 30(7): 1083-1138.
- [3] Wang C H, Li G H, Li Y S. Nonlinear Dynamic Characteristics for a Rudder Structure System With Dry Friction and Clearance[J]. Vibration and Shock, 2013, 32(19): 22-27.
- [4] Kolnik, Agranovich. Backlash Compensation for Motion System With Elastic Transmission [C]. Electrical & Electronics Engineers in Israel. IEEE, 2012: 1-5.
- [5] Ravanbod-Shirazi L, Besancon-Voda A. Friction Identification Using the Karnopp Model, Applied to an Electropneumatic Actuator [J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2003, 217(2): 123-138.
- [6] Dahl P R. Measurement of Solid Friction Parameters of Ball Bearings
 [C]. In: Proceedings of 6th Annual Symposium on Incremental Motion, Control Systems and Devices, 1977: 49-60.
- [7] Al-Bender F, Lampaert V, Swevers J. The Generalized Maxwell-slip Model: A Novel Model for Friction Simulation and Compensation
 [J]. IEEE Transactions on Automatic Control, 2005, 50 (11): 1883-1887.
- [8] Canudas de Wit C., Olsson H., Astrom K. J. et. al. A New Model Control for Control of System With Friction [J]. IEEE Transactions on Automatic Control, 1995, 40(3): 419-425.
- [9] 刘晓琳,谢孟岑.飞机舵机电动伺服系统的摩擦补偿控制策略[J].组合机床与自动化加工技术,2022,579(5):45-50.
- [10] 吴旭,张倩,王群京,等.基于摩擦补偿的伺服转台自抗扰控 制策略研究[J].微电机,2021,54(5):62-66.

多馈入交直流系统无功补偿器变论域模糊 PI 控制算法

黄浩军1,张健1,张迪2,樊冰3

(1. 中海石油(中国)有限公司天津分公司,天津 300450;

2. 天津滨海概念人力信息科技有限公司, 天津 300452;

3. 中海油能源发展装备技术有限公司, 天津 300452)

摘 要:电网中无功功率是保证供电质量的重要因素,无功补偿器作为无功功率的补偿装置,需始终保持良好的动态性能,研究多馈入交直流系统无功补偿器变论域模糊 PI 控制算法。分析多馈入交直流系统无功特性,构建无功补偿器导纳矩阵,以功率平衡为前提,选取电网稳定裕度指标,通过变论域解耦形式,设计模糊 PI 控制算法,实现无功补偿器的补偿控制。实验结果表明:在本文方法下对无功补偿器进行控制,能够对感性负载和容性负载侧的电压和电流进行有效补偿,且可以在感性与容性负载转换时,快速地完成动态响应,保证电网的平稳运行。
 关键词:多馈入交直流系统; PI 控制;无功补偿器;变论域
 中图分类号: TM712; TP272
 文献标志码: A
 文章编号: 1001-6848(2023)10-0043-06

Variable Universe Fuzzy PI Control Algorithm for Reactive Power Compensator in Multi Infeed AC/DC Systems

HUANG Haojun¹, ZHANG Jian¹, ZHANG Di², FAN Bing³

(1. China Offshore Oil (China) Co., Ltd., Tianjin Branch, Tianjin 300450, China;

2. Tianjin Binhai Concept Human Resource Information Technology Co., Ltd., Tianjin 300452, China;

3. CNOOC Energy Development Equipment Technology Co., Ltd., Tianjin 300452, China)

Abstract: Reactive power in China is an important factor to ensure the quality of power supply. As a device for reactive power compensation, the reactive power compensator should always maintain a good dynamic performance, study the variable universe fuzzy PI control algorithm of reactive power compensator in multi infeed AC/DC systems. Analyzed the reactive power characteristics of multi infeed AC/DC system, constructed the admittance matrix of reactive power compensator, selected the grid stability margin index on the premise of power balance, designed a fuzzy PI control algorithm through variable universe decoupling form, and realized the compensator can effectively compensate the voltage and current at the inductive load and capacitive load sides, and can quickly complete the dynamic response when the inductive and capacitive loads are converted, so as to ensure the smooth operation of the power grid.

Key words: multi infeed AC/DC system; PI control; reactive compensator; variable universe

0 引 言

在经济快速发展的背景下,由于用电量不断增加和电力分布不均等因素导致电网规模不断扩大,进而引发电力稳定性问题。交直流混联的电网设计成为一种有效利用能源的方式,但也存在着电压失

稳、无功功率不足等问题。目前,已有多数学者对 其进行了研究。

文献[1]提出多馈入运行短路比指标,针对多 次换相失败的问题,基于多馈入运行短路比,考虑 混合级联直流系统的两段式多直流换相失败恢复协 调控制策略,以减少直流换相失败次数。但该方法

收稿日期: 2023-04-27, 修回日期: 2023-05-12

作者简介:黄浩军(1970),男,工程师,研究方向为石油工程。

张 健(1981),男,高级工程师,研究方向为电气工程。

张 迪(1990),男,工程师,研究方向为电气工程。

樊 冰(1988), 女, 高级工程师, 研究方向为电气工程。

中所采用的多馈入运行短路比指标,其计算方式和 阈值的选取存在一定的主观性和局限性。文献[2] 提出了一种基于联络通道电流检测的同时换相失败 预防控制策略。通过检测联络通道异常电流使远端 换流站对近端换流站发生的换相失败快速反应以减 小发生同时换相失败的风险。但该方法稳定性差。 文献[3]充分考虑了直流系统控制响应特性和直流 控制方式对 HMIDC 系统交互作用的影响,采用等值 节点阻抗比作为 MIIF 指标计算方法,评估不同换流 站之间的电压交互作用。但该方法的动态性能较差。

为了解决上述方法中存在的参数调节困难、系 统动态性能不佳等问题,本文采用变论域模糊 PI 控 制算法,提高了控制算法的鲁棒性和适应性。通过 选取电网稳定裕度指标,对交直流系统中的无功补 偿器进行补偿控制,以实现对电网的稳定性和供电 质量的有效控制和保障,提高电网的可靠性和安 全性。

1 构建多馈入交直流系统导纳矩阵

对多馈入交直流系统中受端容易产生扰动,需 要通过无功补偿器进行线路补偿^[4-5],以电网稳定 运行为前提,分析交直流系统的无功电压特性,构 建交直流系统中无功补偿器导纳矩阵。多馈入交直 流系统示意图如图1所示。

图 1 多馈入交直流系统示意图

通过直流电压和交流电压的特性,计算交直流 系统中各节点等效电路的等效电阻、等效电感、等 效电容等参数^[6]。根据无功补偿器的参数和电路拓 扑结构,计算无功补偿器的导纳矩阵。再将无功补 偿器的导纳矩阵与交直流系统的节点导纳矩阵进行 合并,得到包括无功补偿器在内的整个系统的等效 导纳矩阵。

$$\begin{cases} U_x = \frac{3\sqrt{2}}{\pi} LK \cos\alpha U_1 - \frac{3}{\pi} LB_x \\ \cos\beta = \cos\alpha - \frac{I_x}{\sqrt{2}KU_1} \\ R_x = U_x I_x \\ M_x = -P_x \tan\beta + CU_1^2 \end{cases}$$
(1)

式中, U_x 、 I_x 为直流电压和电流, α 、L分别为扰动 状态下补偿器的控制角度和补偿器的个数,K为无 功补偿比, U_1 为换流母线的交流电压, β 为补偿器 功率因数角, P_x 、 Q_x 分别为注入交流系统的有功、 无功功率,C为交换补偿容量。 P_x 、tan β 、 Q_x 均为 函数,则 Q_x 对 U_1 的导数如下:

$$d(yQ_{X} - yU_{1}) = U_{CP} + 2CU_{1}$$
(2)

式中, *U_{cP}*为补偿器部分无功电压特性, 2*CU*₁ 为补偿的无功电压特性。代入式(1)中的各组参数可得:

$$U_{CP} = \frac{P_{\chi}}{U_1} \tan\beta + P_{\chi} \frac{1}{\cos^2\beta} \frac{1}{\sqrt{1 - \cos^2\beta}} \frac{\cos\beta}{U_1} \quad (3)$$

交直流系统侧的无功特性由上述两部分组 成^[7-8]。由此通过多馈入交直流系统导纳矩阵分析 出交直流系统侧的接入特性,根据该特性以电网的 稳定裕度作为指标,分别对无功补偿器的补偿方式 进行分类,对补偿器需要补偿的功率负载进行控制, 保证交流电网的变化稳定。

2 给定交直流电网系统稳定裕度指标

以电路中的等效变化可知,无论电网的结构有 多么复杂,均可以看作为一个简单的2端口网络, 在网络接口中提供负荷供电,使其形成一个简单的 无功补偿电路结构,如图2所示。

图 2 无功补偿器简化电路

图中, D 和 Z_{EQ} 为无功补偿器的等值电势和阻抗, G_{H} + J_{H} 为电动机等效负载电路的恒定功率负荷, I 和 U 为节点电流与电压。根据上节分析出的交直流系统侧的接入特性,在系统承载的负荷逐渐增加时,无功补偿器对各个线路的补偿功率逐渐减

小,以此实现功率平衡,补偿过程如下:

$$G = \frac{D^2 Z_H \cos\chi}{\left(Z_H + Z_{E0}\right)^2} \tag{4}$$

式中, G 为补偿功率, Z_{μ} 为线路阻抗, χ 为负载阻 抗角。当电容或电感等元件接入电路时, 会产生滞 后电流或超前电压,形成电流与电压间的相位差, 从而导致电路中出现阻抗角。电路阻抗角 δ 可以通 过无功补偿器来进行补偿,以实现对电路的无功功 率因数进行调节和稳定。

补偿功率在无功补偿器内部出现 δ 后,其计算 公式为

$$G = \frac{D^2 \cos\chi \left| \left| Z_{EQ} \right| \right|}{\left| \frac{Z_H}{Z_{EQ}} \right| + \left| \frac{Z_{EQ}}{Z_H} \right| + 2\cos(\chi - \delta)}$$
(5)

结合式(4)和式(5),认为负载值与内阻值相等 时,交直流系统中的无功补偿器能够获取最大功率, 则负载可吸收功率最大值,计算方式如下:

$$G_{\max} = \frac{D^2 \cos \chi / 2 |Z_{EQ}|}{1 + \cos(\chi - \delta)}$$
(6)

式中, G_{max} 为最大功率值。在交直流系统为空载状态 时,随着负荷的增加,无功补偿器的负载阻抗会不 断减小,负荷补偿所需的功率就会增加^[9-10],因此 需要相应增加补偿功率,以保证系统稳定。当所供 给的功率达到最大值之后,若负荷仍在增加,则无 功补偿器能够吸收的功率会小于所需功率, 电网功 率则不能平衡,以此给定裕度指标:

$$\lambda = \frac{|Z_H| - |Z_{EQ}|}{|Z_H|} \tag{7}$$

式中, λ 为安全范围裕度指标。当 $\lambda = 0$ 时,表示承 受的极限, 当 $\lambda < 0$ 时则不能运行, 根据该指标设定 无功补偿器的控制算法。

3 解耦形式下无功补偿器模糊 PI 控制

核心逆变器控制框图如图3所示。

图 3 核心逆变器控制框图

该控制框图是针对解耦形式下的无功补偿器而 设计的,其中包含了模糊 PI 控制器。通过对核心逆 变器的控制,实现对无功电流的补偿,从而达到稳 定电网电压的目的。

根据上节获得的交直流电网系统稳定裕度指标, 通过前馈解耦方式控制无功补偿器的补偿精度,使 其形成内外双闭环形式,对补偿器中的电路构建双 模糊控制通路^[11],设定输入变量 M 为和 ΔM ,输出 变量为 ΔW_p 和 ΔW_l , 比例参考值为 W'_p , 积分参考 值为 W7,则 PI 控制下比例和积分参数的计算方 式为

$$\tilde{W}_P = W_P'' + \Delta W_P \tag{8}$$

$$W_I = W_I'' + \Delta W_I \tag{9}$$

式中, \tilde{W}_p 和 \tilde{W}_l 为比例参数和积分参数, 对输入和 输出变量的实际论域进行闭环选择^[12]。区间变化范 围如下:

$$M \in [-8, 8]$$

$$\Delta M \in [-6, 6]$$

$$\Delta W_{P} \in [-1, 1]$$
(10)

 $\Delta W_I \in [-0.5, 0.5]$

按照变论域的模糊化处理,得到模糊论域:

$$E = \{ -6, -5, -4, -3, -2, -1, 0, \\ 1, 2, 3, 4, 5, 6 \}$$
(11)

基于此,在三角函数理论下,对模糊分量设定 控制规则,如表1所示。

表1 模糊控制规则参数

$\Delta W_{ m PI}$	RT	RY	RU	0	AU	AY	AT
RT	AT	AT	AY	AY	AU	AU	0
RY	AT	AT	AY	AY	AU	0	0
RU	AY	AY	AY	AU	0	RU	RY
0	AY	AU	AU	0	RU	RY	RY
AU	AU	AU	0	RU	RU	RY	RY
AY	RY	0	RU	RY	RY	RY	RT
AT	0	RU	RU	RY	RY	RT	RT

以表中内容所示,设定为7组模糊分量集合, 分别为 RT - 负大、RY - 负中、RU - 负小、0 - 零、 AU-正大、AY-正中、AT-正大。其中输入和输 出变量的论域和隶属函数相同, 根据模糊控制参数 控制规则,此次可形成49组控制规则,则控制流程 如图4所示。

如图中内容所示,以49组模糊控制规则对比模 糊分量,在无功补偿器的功率补偿分布中逐步优化, 促使补偿器可以在电网中进行局部收敛,对接入的 负载进行负荷补偿,实现交直流系统的无功补偿控 制。至此通过导纳矩阵的构建和稳定度指标的选择, 基于变论域实现无功补偿器的控制算法设计。

图 4 模糊 PI 算法控制流程

4 实验测试分析

4.1 搭建补偿器结构测试电路

针对上文中设计的控制算法,采用实验测试的 方式进行有效性论证,以模糊 PI 控制器为测试对 象,通过 Matlab 电力系统模拟工具,对无功补偿器 的运行电路进行搭建,并根据实际情况进行参数设 定和调整。选择参数范围:交流侧的三相电压值为 400 V,短路电容为1.5 MKVA,连接电感为15 mH; 直流侧的充电电容为2500 μf,逆变后的损耗阻抗为 1.5 Ω;直流侧母线的电位为800 V,功率器的开关 频率为10 kHz。通过外环电压和内环电流控制,搭 建相应的控制电路,设计参数转换模块,提取无功 电流补偿。具体见图5、图6 所示。

根据图5中内容所示,采用 Matlab 模拟工具中 自带的 Simulink 软件进行模块设定,选择 PLL 锁相 环结构,对电网的电压和负载电流进行控制,无功 补偿器的输出电流 QW 转换,通过自带的 ABC-QW 转换模块完成,直接在相位角中完成 PLL 模块的输 出。根据以上参数和拓扑结构,通过 Matlab 搭建多 馈入交直流系统模型,并计算得到系统导纳矩阵。 根据实际需求和要求,给定交直流电网系统的无功 功率因数、电压稳定性等稳定裕度指标。同时,根 据系统特性和负载情况, 选择合适的无功补偿器类 型和参数。图6中,根据本文所提出的无功补偿器 变论域模糊 PI 控制算法, 使用 Simulink 搭建控制系 统模型,并将模糊 PI 控制器嵌入 STM32 嵌入式处理 器中。使用 Simulink 搭建实验测试平台,并通过 IGBT PWM逆变器和 AC220V 交流电源进行实验 测试。

按照不同模块的功能设定,设置该系统内的无 功补偿形式,以三组工况形式分别进行控制比较, 首先对存在感性负载的电流和电压进行补偿控制, 其次对存有容性负载的电压和电流情况进行线路补 偿控制,最后比较感性向容性切换时的控制效果。 通过比较不同控制方法的效果和稳定性,以评估和 优化控制算法的性能和可靠性。

4.2 感性负载下控制效果

在第一阶段测试中,设定电网运行存在有感性 负载情况,使用无功补偿器进行无功补偿,并采用 本文方法进行控制,验证新方法的控制效果。在电 网中接入 40 kW 的有功负载和 50 kVar 的感性无功 负载,接入后的负载侧电压和电流情况,如图 7 所示。

图7 感性负载时负载侧电压与电流波形图 根据图中情况来看,当电网中存在有大量的感 性负载时,负载侧的电流和电压会形成较大的相位 差,且运行相位的方向相反,即电流滞后电压。本 文应用无功补偿器进行控制,效果如图8所示。

图 8 本文方法控制下感性负载无功补偿效果

如图所示采用本文方法,将无功补偿器应用在 线路中进行补偿控制,能够得到较为相同的电压和 电流相位,且电压和电流的运行方向大致相同,具 有较好的无功补偿效果,说明本文方法可以对无功 补偿器进行有效控制,使其能够对电网中的感性负 载进行有效补偿,从而提高电力系统的无功功率因 数和稳定性。

4.3 容性负载时控制效果

第二阶段验证电网存在容性负载时,新方法对无 功补偿器线路补偿的控制效果,其中电网中有功负载 接入量仍为40 kW,同时接入容性无功负载50 kVar, 负载侧的电压和电流情况,如图9 所示。

图 9 中当电网存在容性无功负载时,由于其在 总功率中的占比较大,在负载侧的电流和电压存在 较大相位差,且运行相位的方向相反,即电流超前 电压,需要无功补偿器进行补偿。采用本文方法对 补偿器进行控制,效果如图 10 所示。

图 10 本文方法控制下容性负载无功补偿效果

通过本文方法对选定的无功补偿器进行控制, 将其应用在电网容性负载补偿中,补偿后的电压和 电流相位基本相同,具有较强的无功补偿效果,说 明本文方法可以对无功补偿器进行有效控制,使其 能够对电网中的容性负载进行有效补偿,从而提高 电力系统的无功功率因数和稳定性。

4.4 感性与容性负载切换时控制效果

在完成感性与容性负载的独立控制后,验证两 类负载转换时的无功补偿器控制效果,共分为 A1 和 A2 两种模式。A1 模式中无功负载从感性向容性切 换,在初始时刻时电网接入 20 kW 的有功负载和 40 kVar的感性无功负载,在运行 0.3 s 时切换为 40 kVar的容性无功负载,无功补偿控制前后的电压 和电流情况,如图 11 所示。

图 11 感性负载转换容性负载时无功补偿控制比较

根据图 11 中情况可见,在负载切换前后切换点 的电流与电压存在较大相位差,且相位差的方向相 反,切换瞬间的电流变化十分明显。采用本文方法 控制的无功补偿器进行电网无功补偿,能够很好完 成负载切换,在瞬间形成动态响应,保证电网的电 压没有出现波动,且电流变化平稳。

基于此验证 A2 模式,为无功功率从容性向感性 切换,在初始时刻先接入容性无功负载,并在 0.3 s 时转换为感性无功负载,参数与上文 A1 模式。具体 情况如图 12 所示。

如图 12 中内容所示,切换点的负载电流在转换时,会产生较大的相位差,且方向不同。在本文方法控制下的无功补偿器进行补偿后,能够进行动态

的响应,跟随负载无功功率变化,产生较好的补偿 效果,保证电网的运行稳定。综合所有测试情况, 在本文方法应用下对无功补偿器进行控制,可以同 步对感性和容性负载完成补偿,保障电网中的电流 和电压稳定,具有应用效果。

5 结 语

无功补偿器是现代电力系统中的重要组成部分, 具有补偿系统无功功率的重要作用,但由于其内在 的电路容易在补偿时出现波动,影响整个电网的平 稳性,需要采用有效的方法进行控制。本文通过 PI 模糊控制算法设计,建立了一个空间状态模型,对 补偿器的内环和外环电路进行重新控制,并通过测 试完成了具体验证,能够在负载转换时形成有效控 制。总体而言整个测试可以反映新方法的有效性, 但受时间限制,仍存在一些需要完善的地方,如适 当地缩小仿真步长,以增加仿真精度,同时在功率 切换时考虑到过渡过程的存在,以获得更加准确的 仿真结果。

参考文献

- [1] 陈倩,王国腾,徐政,等. 含混合级联直流系统的多馈入直流
 系统换相失败恢复协调控制策略[J]. 南方电网技术, 2022,
 16(2):41-49.
- [2] 王凌娆,姚伟,杨程祥,等.基于联络通道电流检测的多馈入 直流系统同时换相失败预防控制[J].电力自动化设备,2022, 42(11):120-127.
- [3] 李清,王拓,毛炽祖,等. 计及直流控制特性的混合多馈入直流系统交互作用因子计算方法[J]. 电网技术,2021,45(8): 3125-3133.
- [4] 刘一论,刘进飞,高红均.一种抑制多馈入直流系统后续换相
 失败的低压限流单元参数优化策略[J].电力建设,2021,42
 (5):122-129.
- [5] 张一凡,唐飞,向农,等.考虑抑制 MIDC 后续换相失败风险的节点差异化动态无功补偿方法研究[J].电网技术,2022,46(2):541-553.
- [6] 杜涛,曾国辉,黄勃,等.基于蝗虫优化算法变论域模糊 PI 的 PMSM 矢量控制[J].现代制造工程,2021(4):1-5,11.
- [7] 李佳,夏勇军,严才,等.混合多馈入直流系统 VSC-HVDC 和 滤波器的无功协调控制[J].电力自动化设备,2021,41 (06):100-107.
- [8] 项颈,万玉良,张超明,等.基于附加电流指令的抑制多馈入 直流系统相继换相失败渐进恢复策略[J].电力建设,2021, 42(2):20-26.
- [9] 毛炽祖,娄伟涛,李清,等. 混合多馈入直流输电系统交流故
 障下 VSC 暂态调压控制策略[J]. 高电压技术,2021,47(8):
 2905-2913.
- [10] 陈中, 严俊, 朱政光, 等. 多馈入交直流混联系统解耦安全域 的刻画及应用[J]. 电力系统自动化, 2020, 44(22): 37-44.
- [11] 李清,王拓,毛炽祖,等. 计及直流控制特性的混合多馈入直流系统交互作用因子计算方法[J]. 电网技术,2021,45(8): 3125-3133.
- [12] 宮明辉,李凌峰,乌江,等.变论域双模糊控制器在锂电池均 衡策略仿真中的应用[J].西安交通大学学报,2020,54
 (11):158-165.

电压跌落下的双馈风力发电机网侧变流器 自适应变惯量控制方法

张红义,呼木吉乐图

(北京京能清洁能源电力股份有限公司内蒙古分公司,呼和浩特 010000)

摘 要:提出电压跌落下的双馈风力发电机网侧变流器自适应变惯量控制方法,控制电压跌落时的直流电压波动, 提升电网跌落时双馈风力发电机不间断运行能力。基于双馈风力发电机数学模型特点,引入虚拟同步发电机控制机 制,设计用于增强与同步发电机相似的惯性响应和下垂属性的有功频率控制器,和用于调节机端电压和无功功率的 励磁控制器,将两个控制器同时作用于网侧变流器,实现双馈风力发电机网侧变流器控制;并通过最优控制原理自 适应整定转动惯量与阻尼系数,制定取值规则,使双馈风力发电系统的响应速度与超调量达到最优。实验证明:该 方法能够在电压跌落情况下,通过有效控制网侧变流器,实现直流母线电压、无功及有功功率的平稳输出,保证发 电机的持续运行,增强了双馈风力发电系统运行的稳定性与可靠性。

关键词:电压跌落;双馈风力发电;网侧变流器;变惯量;同步发电机;阻尼系数 中图分类号:TM464;TM343;TP273 文献标志码:A 文章编号:1001-6848(2023)10-0049-06

Adaptive Variable Inertia Control Method for Side Converter of Doubly-fed Wind Generator Under Voltage sag

ZHANG Hongyi, Humujiletu

(Beijing Jingneng Clean Energy Power Co., Ltd., Inner Mongolia Branch, Hohhot 010000, China)

Abstract: An adaptive variable inertia control method for the grid-side converter of the doubly-fed wind turbine generator under voltage sag was proposed to control the DC voltage fluctuation during voltage sag and improve the uninterrupted operation capability of the doubly-fed wind turbine generator during grid sag. Based on the characteristics of the mathematical model of doubly-fed wind turbine generator, the virtual synchronous generator control mechanism was introduced, and the active frequency controller used to enhance the inertia response and droop properties similar to the synchronous generator, and the excitation controller used to adjust the generator terminal voltage and reactive power were designed. The two controllers were applied to the grid-side converter at the same time to realize the grid-side converter control of doubly-fed wind turbine; Through the optimal control principle, the moment of inertia and damping coefficient were adjusted adaptively, and the value rules were formulated to optimize the response speed and overshoot of the doublyfed wind power generation system. The experiment shows that this method can realize the stable output of DC bus voltage, reactive power and active power, ensure the continuous operation of the generator, and enhance the stability and reliability of the operation of the doubly-fed wind power generation system by effectively controlling the grid-side converter under the condition of voltage drop.

Key words: voltage drop; double-fed wind power generation; network-side converter; variable inertia; synchronous generator; damping coefficient

收稿日期: 2023-03-29、修回日期: 2023-04-19

作者简介:张红义(1970),男,本科,高级工程师,研究方向为 plc 控制技术、风机动态载荷控制策略和风机载荷仿真等。 呼木吉乐图(1985),男,本科,中级工程师,研究方向为智能传感器控制技术、风机动态载荷控制策略和风机载 荷仿真等。

0 引 言

风力发电技术的进步,促使风电产业得到了长 足发展,双馈风力发电机由于有着较低的变流器容 量,以及优良的调速能力,在风电领域得到广泛应 用^[1-2]。而风力发电规模的日益扩大以及集成化标准 的提升,对双馈风力发电机组提出了更高的要 求^[3-4]。在风力电网的运行过程中,若电力系统发生 故障,导致电网电压异常跌落,不能随意脱离电网, 要具备穿越低电压的能力。在双馈风力发电机中, 变流器是一种较为重要的功率元件,被用于能量的 交换,其中,和电网直接相连的网侧变流器,更是 能对电压情况进行直接感知^[5-6]。为了降低或消除电 压跌落时出现的过电流或过电压对发电机造成的影 响,保证双馈风力发电系统能够安全运行,在电压 跌落状态下对网侧变流器进行有效控制非常必要。

近年来,国内外诸多学者关于双馈风力发电机 网侧变流器的控制问题进行了大量研究,并取得了 一定成果,如彭红义等人利用外环与内环相结合的 方式设计出双闭环控制系统,在该系统中,应用 PID 控制器和自抗扰控制器分别作为系统的内、外 环.利用两个控制器对网侧变流输出的电流进行控 制,进而维护直流母线电压的平稳,使整个电力系 统能够顺利运行^[7];胡向前等人设计了比例积分谐 振控制器与滑模变结构,前者主要对存在于电流内 的负序分量进行管制,后者则对实时功率实施控制, 二者结合起来可以保证电力系统的输出功率平稳^[8]。 上述两种方法虽然对双馈风力发电机网侧变流器起 到了一定的控制作用,但是第一种方法应用在内环 的 PID 控制器,在非线性控制方面表现不足,容易 出现"超调"现象; 第二种方法对网侧变流器的控 制,缺少自适应性,影响最终的控制效果。

双馈型风力发电机属于感应发电机,是风力发 电系统的中心部分,定子、转子以及轴承模块构建 了其本体,它可以实现整个发电机组的变速运行, 增强机组吸收风能的能力,提升工作效率^[9-11]。因 此本文提出电压跌落下的双馈风力发电机网侧变流 器自适应变惯量控制方法,可以通过对网侧变流器 的控制,保证电压跌落下的双馈风力发电机组的正 常运行,具有较强的应用性。

双馈风力发电机网侧变流器自适应 变惯量控制

在双馈风力发电系统中,变流器根据安装位置的不同分为转子侧变流器(RSC)和网侧变流器

(GSA), 二者以背对背的形式利用直流母线进行连接, 并通过该母线电容完成解耦, 能够进行独立控制, 互不干扰^[12-13]。GSA 除了与直流母线进行连接以外, 另外的端口则直接连入电网, GSA 的用途则 在于保证直流母线电压频率的平稳以及控制输入电流的波形与功率因数。

双馈风力发电系统在运行过程中,电压跌落是 出现频率较多的故障形式,该故障在电网中的具体 表现为电压有效值在半周波至 60 s内,迅速降至额 定电压的 90% 至 10%。当电网出现电压跌落等异常 情况时,将会在双馈风力发电机组(DFIG)内部出现 电磁过渡过程,甚至在电压下降幅度较大时,导致 电机转子回路过流或过压。

由于 GSA 直接与电网相连,所以通过控制 GSA 的方法,可以有效减少由于电压跌落对 DFIG 造成的不良影响。

1.1 双馈风力发电机数学模型

双馈风力发电机组的电压方程为

$$\begin{cases} U_{s} = R_{s}I_{s} + \frac{\mathrm{d}\psi_{s}}{\mathrm{d}t} + j\omega_{1}\psi_{s} \\ U_{r} = R_{r}I_{r} + \frac{\mathrm{d}\psi_{r}}{\mathrm{d}t} + j(\omega_{1} - \omega_{r})\psi_{r} \end{cases}$$
(1)

其中, 磁链方程可以描述为

$$\begin{cases} \psi_{s} = L_{s}I_{s} + L_{m}I_{r} \\ \psi_{r} = L_{m}I_{s} + L_{r}I_{r} \end{cases}$$
(2)

式中, U_s 为定子电压, R_s 为双馈风力发电机组定子的电阻, I_s 为定子电流,d为电磁感应系数, ψ_s 为发电机组定子的磁链矢量,t电磁回转时间, ω_1 代表同步电气角频率; U_r 表示转子电压, R_r 表示双馈风力发电机组转子的电阻, I_r 表示转子电流, ψ_r 表示发电机组转子的磁链矢量, ω_r 表示转子电气角频率; L_s 表示定子绕组全自感量, L_r 表示转子绕组全自感量, L_m 为发电机组中定、转子中的互感。

DFIG 定子输出功率可以描述为

$$\begin{cases} P = 1.5 \operatorname{Re}[U_{s}I_{s}] \\ P' = -1.5 \operatorname{Im}[U_{s}I_{s}] \end{cases}$$
(3)

(4)

式中, *P* 为有功功率, *P*'为无功功率。 设定 $P = L_m I_r$ 、 *P*' = $L_m I_s$, 则有: $\psi_s = L_s I_s + P = L_s I_s + 1.5 \text{Re}[U_s I_s]$ $\psi_s = L_I + P = L_I + 1.5 \text{Im}[U_I]$

$$\psi_r = L_r I_r + P = L_r I_r + 1.5 Im[U_s I_s]$$
 (5)
将式(4)和式(5)代入式(1)中,则可以得到:

$$\begin{cases} U_{s} = R_{s}I_{s} + \frac{d[L_{s}I_{s} + 1.5\operatorname{Re}(U_{s}I_{s})]}{\mathrm{d}t} + j\omega_{1}\psi_{s} \\ U_{r} = R_{r}I_{r} + \frac{d[L_{r}I_{r} - 1.5\operatorname{Im}(U_{s}I_{s})]}{\mathrm{d}t} + j(\omega_{1} - \omega_{r})\psi_{r} \end{cases}$$
(6)

式(6) 计及了定子励磁电流变化的双馈风力发 电机数学模型,根据此模型便可以在电压发生跌落 时,对 DFIG 控制策略进行研究。

1.2 基于虚拟同步发电机的网侧变流器控制

虚拟同步发电机(VSG)属于控制机制,其控制 参数具有可调性与灵活性的特点^[14-15]。相比传统的 控制方法,VSG 控制更加适用于功能多样的电网, 可以有效解决当下电力领域新能源化引发的不平稳 性问题。

所谓 VSG 控制,就是把同步发电机(SG)数学模型引进某个设备的控制机制中,使之可以显示出 SG 的属性,如转运惯性、阻尼、调压以及调频等属性。本文利用 VSG 控制机制来实现对双馈风力发电机网侧变流器的控制。

基于 VSG 的网侧变流器控制机制,利用模拟 SG 转子运动方程,调整由于电压跌落引起的电压频率 波动,使系统频率可以平稳过渡至合理范围,以此 保证 DFIG 运行的平稳性。DFIG 网侧变流器 VSG 控 制机制的具体结构如下图 1 所示。

DFIG 网侧变流器 VSG 控制机制利用 VSG 对 SG 的励磁与功频属性实施模拟,主要包括有功频率与励磁两个控制器的设计。其中,有功频率控制器的作用是在 GSA 输出功率与频率间产生动态变化时,增加与 SG 相似的惯性响应和下垂属性;利用励磁控制器可实现机端无功功率与电压参数的有效调节。

图 1 中, K_J 为控制机制中的惯性系数, λ 表示 无功电压下垂系数, $U_N = U$ 分别表示控制机制的额 定电压与实际电压,转动惯量用 J 描述并存在于 DFIG 中,阻尼系数用 D 描述, SG 的功角用 δ 描述, 电动势用 e 描述, SG 参考有功功率用 P_{ref} 描述, SG 参考无功功率用 P'_{ref} 描述, 开环节点用 s 描述。

1.2.1 励磁控制器

由于 SG 是通过控制励磁的方式对机端电压和无 功功率实施调节,所以在对励磁控制器进行设计时, 主要考虑的是与电压差和无功功率相关的信息。励 磁的过程一般采用一阶惯性环节进行表述,所以通 过对 SG 励磁过程的模拟,可以获取关于 VSG 的励 磁公式,描述为

$$K_{J} = Q_{\rm ref} + \frac{\lambda \left(U_{N} - U \right)}{E} - P'_{Q} \tag{7}$$

式中,调制电压幅值用 E 描述, P'_{Q} 为无功功率检测值。

 P'_o 可以描述为

 $P'_{Q} = (u_{a} - u_{b})i_{c} + (u_{b} - u_{c})i_{a} + (u_{c} - u_{a})i_{b}$ (8) 式中, 三相相电压与相电流分别用 u_{a} 、 u_{b} 、 u_{c} 和 i_{a} 、 i_{b} 、 i_{c} 描述。

式(7)对电压差和无功功率部分进行了表述, 以此为基础便可以对励磁控制器进行设计。

1.2.2 有功频率控制器

把 SG 虚拟轴系引进 GSA 的控制中,能够获取 GSA 转子运动方程,描述为

$$\begin{cases} J \frac{d\omega}{dt} \approx \frac{P_{m}}{Lm} - D\omega \\ \frac{d\delta}{dt} = \omega \end{cases}$$
(9)

式中, ω为角频率系数, 机械功率用 P_m 描述。

VSG 控制中的 P_m 就是 DFIG 在特定风速条件下 所能提供的总功率,可以描述为

$$P_{\rm m} = P_{\rm ref} + \ell \left(\omega - \omega_{\rm r} \right) \tag{10}$$

式中, 虚拟调速系数用 ℓ 描述, 通过 ℓ 可以建立 VSG 一次调频。

式(9)体现了 GSA 虚拟转子转动惯量以及阻尼 属性,拟建了虚拟轴系运动方程,实现系统频率和 虚拟转子转动速度的耦合,使 GSA 具有与 SG 相似 的惯性响应属性。利用式(10)可以获取基于 VSG 控 制机制的 GSA 有功频率控制器。

综上,将励磁控制器与有功频率控制器引入到 DFIG 网侧变流器 VSG 控制机制结构中,可以得到 关于双馈风力发电机网侧变流器的指令电压,描 述为

$$U' = \begin{bmatrix} \sqrt{2}E\sin\delta \\ \sqrt{2}E\sin(\delta - \frac{2\pi}{3}) \\ \sqrt{2}E\sin(\delta + \frac{2\pi}{3}) \end{bmatrix}$$
(11)

利用获取的 VSG 的指令电压,来调节 DFIG 功率输出,进而减小电压跌落时机侧电压变化幅度,达到 DFIG 平稳运行的目的。

1.3 GSA-VSG 自适应控制策略

1.3.1 自适应惯量阻尼控制原理

在电网环境中,如果电压出现跌落的现象,那 么电网的电压频率与功率会随之发生衰减震荡。通 过自适应选择合适 *J* 的和 *D*,可以提升整个双馈风 力发电系统的自适应动态调节能力与抗干扰能力。

本文將 $\frac{d\omega}{dt}$ 的正负作为自适应算法的判断条件。 为了能更好地对 GSA 进行控制,使整个双馈风力发 电系统运行得更为平稳,可以采用设置 $\frac{d\omega}{dt}$ 以及 DFIG 有功输出功率变化的临界值的方式,来解决自适应 算法因为反复判断 $\frac{d\omega}{dt}$ 的正负情况而造成 DFIG 的浮 动,使 DFIG 输出功率出现连续震荡的问题。自适应 算法的公式可以描述为

$$J_{v} = \begin{cases} J_{0} + \vartheta_{J_{v}} \left| \frac{\mathrm{d}\omega}{\mathrm{d}t} \right| \\ \frac{\mathrm{d}\omega}{\mathrm{d}t} > 0 \cap \left| \frac{\mathrm{d}\omega}{\mathrm{d}t} \right| > T_{j} \cap \Delta P > P_{J_{v}} \\ \\ J_{0} \left| \frac{\mathrm{d}\omega}{\mathrm{d}t} \leqslant 0 \\ J_{0} \left| \frac{\mathrm{d}\omega}{\mathrm{d}t} \leqslant T_{J} \cap \Delta P > P_{J_{v}} \end{cases}$$

$$D = \begin{cases} D_{0} \left| \frac{\mathrm{d}\omega}{\mathrm{d}t} \leqslant 0 \\ D_{0} + \vartheta_{D} \right| \omega \\ \\ \frac{\mathrm{d}\omega}{\mathrm{d}t} < 0 \cap |\omega| \leqslant T_{D} \cap \Delta P > P_{D} \\ \\ D_{0} \left| \omega \right| \leqslant T_{D} \cap \Delta P \leqslant P_{D} \end{cases}$$

$$(12)$$

式中,自适应转动惯量用 J_{a} 描述, J = D 初始值分 別用 J_{0} 和 D_{0} 描述,自适应转动惯量与阻尼系数调 节参数分别用 $\vartheta_{J_{v}}$ 和 ϑ_{D} 描述,角频率变化率与偏差 临界值分别用 T_{J} 和 T_{D} 描述,自适应转动惯量有功 功率变化临界值用 $P_{J_{a}}$ 描述,阻尼系数有功功率变化 临界值用 P_{D} 描述,有功功率差值用 ΔP 描述。

1.3.2 自适应转动惯量和阻尼系数控制参数整定

除了 J_e 和 D 以外, 虚拟调速系数 ℓ 也会对整体 控制效果产生较大影响。通常情况下, ℓ 可以描述为

$$\ell = \frac{P_{\rm DFIG}^{\rm N}}{0.01\omega} \tag{14}$$

式中,DFIG 额定有功功率用 P_{DFIG}^{N} 描述。

通过最优控制原理对 *J*_e 和 *D* 进行整定,可以使 双馈风力发电系统的响应速度与超调量达到最优。

在构建闭环小信号模型的基础上,通过加强有 功功率的控制,可以得到发电系统的动态特征,利 用分析结果可得到系统开环传递函数:

$$G(s) = \frac{U_s U_g}{Z} + \frac{1}{\left[s(J\omega s + \ell + D)\right]}$$
(15)

式中, DFIG 输出电压用 U_{g} 描述, 线路阻抗用 Z 描述。

令 *G*(*s*) +1 =0,可以获取双馈风力发电系统的 特征根,描述为

$$s^{2} + s\left(\frac{\ell + D}{J\omega}\right) + \frac{U_{s}U_{g}}{Z}\frac{1}{J\omega} = 0$$
(16)

根据式(18),可以得到 J_a 和 D在不同参数变化 条件下的特征根轨迹。如果 D表现为恒定,且 J_a 不 断增大时,特征根则会从过阻尼状态渐渐进入欠阻 尼状态,此时系统稳定性会随之降低,所以 J_a 值不 可过大。但是如果 J_a 值过小,同样也会引起系统动 荡,为了使系统能平稳运行,使 DFIG 对电网显示出 充足的惯量特性,并结合公式(12)中 $\frac{d\omega}{dt}$ 的判断条件 对 J_a 的选取进行约束,选取应符合的条件可以描 述为

$$1 \leq J_v \leq \frac{P_{\max}^1}{\max\left(\frac{\mathrm{d}\omega}{\mathrm{d}t}\right)} \tag{17}$$

式中, GSA 输出功率中有功功率最大值用 P¹_{max}。

如果 J_e 表现为恒定,且 D 不断增大时,特征根则会从欠阻尼状态渐渐进入过阻尼状态,系统稳定性也会随之增强。通常情况下,只要 D > 20 就可达到较好的控制效果。另外,为了避免在小扰动下自适应控制也参与到系统调频中,所以还应对 P_{Je}与P_D进行设定,设定的条件便是 DFIG 的一次调频能力。

2 实验分析

以某发电系统为实验对象,该发电系统在传统 发电方式下连入了新能源发电电网,该电网中传统 机组为50 MW 的火电发电机组,新能源机组为1.5 MW 双馈型风力发电机组,主要用于对周边物流园 区及居民区进行电力供应。

为了证明本文方法的实际应用效率,实验在电 力系统故障导致有效电压迅速跌落的时刻,利用本 文方法对接入的双馈型风力发电机组网侧变流器进 行了控制。双馈型风力发电系统相关参数如表1所

表 1 DFIG 参数设置						
设备名称	参数名称	数值				
风力机	风轮半径/m	17				
	最佳风能利用系数	0.7				
	空气密度/(kg/m ³)	1.25				
	额定功率/kW	1500				
	定子额定电压/V	575				
	额定频率/Hz	60				
双牌团十七中扣	定子电阻/p. u.	0.024				
双顷风刀及电机	定子漏感/p. u.	0.17				
	转子电阻/p. u.	0.016				
	转子漏感/p. u.	0.15				
	定子与转子互感/p.u.	2.8				
	直流电容电压/V	1150				
双 DWN 亦始嬰	电阻/p. u.	0.3				
从1 WIN 交换价	电容/F	0.01				
	职件工去限率/H	1(20)				

示,获取的实验结果,如图2所示。

图 2 应用本文方法后的控制结果

由图 2 可知,由于该电网电压出现了跌落情况, 在实验进行到 0.4 s 时,DFIG 出现了震荡。应用本 文方法对网侧变流器进行控制后,DFIG 的五种参数 值变化出现小幅度波动,但波动时间持续较短,在 0.6 s 左右很快恢复了平稳,没有影响 DFIG 的正常 运行。由此可见,应用本文方法对 DFIG 网侧变流器 的电压、输出功率、频率、阻尼和转动惯量进行了 有效地控制,实现 DFIG 的持续运行。

为了衡量转动惯量与阻尼系数对 DFIG 动态性能 的影响,分析在不同转动惯量与阻尼系数下应用本 文方法对双馈风力发电机并网输出有功功率的控制 情况及动态响应情况。实验设定在时间为 1.1 s 时, 电压出现跌落情况,该双馈风力发电机并网输出有 功功率情况,如图 3 所示。

由图 3 可知,当阻尼系数一致时,转动惯量在 允许范围内,取值越小,控制效果相对越好;当转 动惯量一定时,阻尼系数在允许范围内,取值越大, 控制效果相对越好。转动惯量与阻尼系数的取值可 以影响 DFIG 的性能,为获取更具优势的 DFIG 的

图 3 不同转动惯量和阻尼系数下的有功功率情况

3 结 论

双馈电力系统在实际运行中,电压跌落是较为常 见的一种故障,这种故障会对双馈风力发电机造成较 大的影响,妨碍整个电力系统的正常运行。因此本文 提出一种电压跌落下的双馈风力发电机网侧变流器自 适应变惯量控制方法,将虚拟同步发电机控制机制引 入控制方法中,构建双控制器,并通过对转动惯量与 阻尼系数的自适应整定,实现双馈风力发电机网侧变 流器的控制。通过实验证明,在电网电压发生电压跌 落的情况下,本文方法能够实现对网侧变流器的有效 控制,提高双馈风力发电机平稳运行能力。

参考文献

- [1] 颜湘武,崔森,常文斐.考虑储能自适应调节的双馈感应发电机一次调频控制策略[J].电工技术学报,2021,36(5): 1027-1039.
- [2] 吴雷,李岚,程之隆,等. 基于 PIR 控制器的电压不平衡下双 馈风力发电机转子侧变流器控制[J]. 电测与仪表,2020,57 (16):118-124.
- [3] 岳家辉,张新燕,周鹏,等.基于自适应惯量阻尼的双馈风电机组虚拟同步控制策略[J].电力系统及其自动化学报,2021, 33(9):40-48.
- [4] 张学广,邱望明,方冉,等.基于变流器改进控制的双馈风电机组 SSO 抑制方法[J].电机与控制学报,2020,24(2):
 1-9.
- [5] 冯纯纯,杨龙月,郭锐,等.一种自适应变惯量同步锁相控制
 策略[J].电测与仪表,2020,57(1):131-135.
- [6] 竺兴妹,刘琳琳. DFIG 三相四开关网侧变流器预测功率控制 策略[J]. 电网与清洁能源, 2022, 38(3): 24-31, 41.
- [7] 彭红义,张志敏,周振雄.DFIG 网侧变流器双闭环控制策略
 [J].北华大学学报(自然科学版),2020,21(5):682-687.
- [8] 胡向前,毕雪芹,陈超波.一种改进的双馈风力发电网侧变流 器控制策略[J].自动化与仪表,2020,35(2):1-5.
- [9] 徐海亮,聂飞,王诗楠.弱电网下永磁风机网侧变流器频率耦 合效应关键作用因子评估及控制对策[J].电网技术,2021, 45(5):1687-1697.
- [10] 岳有军,程敏,赵辉,等. 自适应惯量及阻尼 VSG 的船舶光 伏逆变器控制[J]. 计算机仿真, 2021, 38(1): 82-87.
- [11] 张涛,郑家琪,王福东,等. 基于模糊控制的 VSG 转动惯量 自适应算法[J]. 电力电子技术, 2021, 55(1): 40-44.
- [12] 廉小亲,安飒,李震. DFIG 网侧逆变器改进线性自抗扰控制 策略设计[J]. 计算机仿真, 2020, 37(12): 98-102.
- [13] 高倩,张兴,张海峥,等.基于网侧电流估计的并网逆变器控制策略研究[J].电力电子技术,2020,54(11):65-68.
- [14] 王耀函,张扬帆,宋鹏,等.基于工作点在线计算的双馈机组 网侧变流器高电压穿越控制[J].电力系统及其自动化学报, 2022,34(9):24-31.
- [15] 潘尔生,王智冬,王栋,等.基于锁相环同步控制的双馈风机 弱电网接入稳定性分析[J].高电压技术,2020,46(1): 170-178.

基于参数自适应永磁同步电机电流控制

王朝庆,李鸿高

(中国电子科技集团公司第四十三研究所 微系统安徽省重点实验室, 合肥 230088)

摘 要:基于永磁同步电机 d、q 坐标系电流模型,运用自适应方法和稳定性理论,在模型参数未知的情况下,设 计一种参数自适应电压矢量控制律,该控制律利用 d、q 轴电流误差、模型的估计参数等信息,通过引入误差反馈 补偿、参数估计补偿等方式消除 d、q 电流的控制误差,并通过参数自适应律消除模型存在未知参数带来的影响, 特别是有效处理控制输入存在乘积因子未知的情况,较传统的 PID 控制方法提高了环路控制的性能,通过仿真验证 了该控制律的有效性。

关键词: 永磁同步电机; 电流控制; 参数自适应 中图分类号: TM351; TM341; TP273 文献标志码: A 文章编号: 1001-6848(2023)10-0055-04

Current Control of Permanent Magnet Synchronous Motor Based on Parameter Adaptive

WANG Chaoqing, LI Honggao

(The 43rd Research Institute of China Electronics Group Cooperation, Anhui Microsystem Key Lab, Hefei 230088, China)

Abstract: A voltage vector control algorithm was designed under the condition that the model parameters were unknown, based on the current model of permanent magnet synchronous motor in d and q coordinate system and using the adaptive method and stability theory. The control algorithm contains the current error information of d and q axis and can eliminate the steady-state error and improve the rapidity of current control by introducing error feedback compensation and parameter estimation compensation. Furthermore, the influence of unknown parameters was eliminated by the parameter adaptive law. The control algorithm can improve the control performance comparing with the traditional PID control method, which can be verified by simulation. Key words: PMSM; current control; parameter adaptive

0 引 言

永磁同步电机 (Permanent Magnet Synchronous Motor, PMSM)具有效率高、使用方便、体积小等特 点,获得了越来越多的场景应用。各种应用环境都 需要对控制环路进行设计,控制环路从外到内依次 是电流环、速度环和位置环,其中电流环处于绝对 的核心地位,电流控制的优劣决定了转速控制的好 坏和运转的稳定性,进而决定定位的精确性,如双 环调速系统存在很多非线性^[1]和不确定的影响^[2], 严重制约了系统的调速性能。电机在运行过程中, 参数受温度、定子电流和磁通饱和度等因素的影 响^[3],如随着温度的升高影响线圈电阻,电机工作 状态变化时,其参数也会发生改变。 当电机长期运转时,造成实际参数与控制律中 的设计不一致,导致电机的控制性能下降^[4]。因此, 在电机环路控制系统中,需要实时准确地获取电机 的实际参数^[5-6]。最直观的解决方法是参数辨识,包 括最小二乘法^[7]、卡尔曼滤波算法^[8]、模型参考 自适应算法^[9]等。最小二乘法虽然结构简单,但需 要处理大量的数据,存在数据易饱和的问题,且在 非稳态条件下,跟踪能力较差。由于卡尔曼滤波算 法的复杂性,往往不能同时估计多个未知参数,所 以一般固定某些参数来实现对剩余其它参数的辨识, 同时该算法对噪声的鲁棒性较差。在模型参考自适 应算法中,待辨识参数识别的准确率和快速性与算 法中使用的参数具有较强的相关性,参数的选取会 直接影响最终的辨识效果。

收稿日期: 2023-03-31, 修回日期: 2023-05-22

作者简介:王朝庆(1983),男,高级工程师,研究方向为伺服系统建模非线性系统控制、切换系统及复杂系统理论。 李鸿高(1970),男,研究员高级工程师,研究方向为数字电路理论分析与系统设计。

因此,以上对于电机参数的处理方法采用大量 的数据和复杂的理论进行预估,难以在工程中实现, 造成目前实际应用中多数的控制方法仍然采用传统 的 PID 控制,该方法具有结构简单,工程应用成熟, 最大的特点是不依赖于模型,所以导致该方法在实 际的应用中难以使系统获得较高的性能。

为了解决上述问题,本文提出一种全参数自适 应方法,同时考虑了电阻、电感、转子磁链等多个 未知参数的影响,引入带有未知估计参数的 d、q 轴 控制律,通过引入误差反馈补偿、参数估计补偿等 方式消除 d、q 控制电流的稳态误差、提升了电流控 制的快速性,并通过参数自适应律消除模型未知参 数带来的影响,较传统的 PID 控制方法提高了环路 控制的性能,解决传统 PID 中存在的控制精度低等 问题,具有很好的工程实用价值。

1 永磁同步电机数学模型

本文研究的对象模型内置式永磁同步电机,将 三相静止坐标系经过变换,可得到同步旋转坐标系 模型^[10],如式(1)所示。

$$\begin{cases} \dot{i}_{d} = \frac{1}{L} u_{d} - \frac{R}{L} \dot{i}_{d} + n_{p} \omega_{m} \dot{i}_{q} \\ \dot{i}_{q} = \frac{1}{L} u_{q} - \frac{R}{L} \dot{i}_{q} - n_{p} \omega_{m} \dot{i}_{d} - \frac{n_{p} \varphi_{f}}{L} \omega_{m} \end{cases}$$
(1)

其中, u_d 、 u_q 、 i_d 、 i_q 分别表示 d、q轴的输入控制 电压、等效电流分量, R表示定子电枢绕组电阻, 表示微分算子, ω_m 表示转子机械角速度, φ_f 表示永 磁体产生的磁链, n_p 表示转子极对数。

假设1:模型(1)中R、L、 φ_f 为未知常量或慢 变参数($\dot{R} = 0$ 、 $\dot{L} = 0$ 、 $\dot{\varphi} = 0$),且 n_p 已知、 i_d 、 i_q 、 ω_m 为可测量变量。

2 参数自适应控制律设计

为了解决较传统的 PID 控制算法带来的控制精 度低缺点,基于第1部分数学模型针对相电阻 R、 相电感 L、转子磁链 φ_r 等慢变参数未知的情况下推 导设计电流环参数自适应控制律,如下框图1所示, 从图1可以看出,整个控制分为两个部分,分别为 误差反馈补偿和参数估计补偿,前者用来消除控制 系统的控制误差,后者用来消除未知参数带来的影 响,提升了电流环路的性能指标。

图1 系统控制原理框图

 \hat{x} .

令 $\tilde{e}_d = i_d - i_{dref}$, $\tilde{e}_q = i_q - i_{qref}$, $\chi_1 = -R/L$, $\chi_2 = -\varphi_f/L$, 代人式(1)变形得到:

$$\begin{cases} \dot{e}_{d} = \chi_{1}\tilde{e}_{d} + \chi_{1}i_{dref} + n_{p}\omega_{m}\tilde{e}_{q} + n_{p}\omega_{m}i_{qref} + \frac{1}{L}u_{d} \\ \dot{e}_{q} = \chi_{1}\tilde{e}_{q} + \chi_{1}i_{qref} - n_{p}\omega_{m}\tilde{e}_{d} - n_{p}\omega_{m}i_{dref} + (2) \\ n_{p}\chi_{2}\omega_{m} + \frac{1}{L}u_{q} \end{cases}$$

其中, i_{dref} 、 i_{qref} ,分别为d、q轴电流的期望值,

进一步定义 $\hat{\chi}_1$ 、 $\hat{\chi}_2$ 、 \hat{L} 分别为 χ_1 、 χ_2 、L的估 计值,同时定义 χ_1 、 χ_2 、L的误差分别为 $\tilde{\chi}_1 = \chi_1 =$

$$\begin{split} \tilde{\chi}_{2} &= \chi_{2} - \hat{\chi}_{2}, \ L = L - L, \ \text{R} \ \text{R} \ \text{R} \ (2) \ \text{#} \ \text{P} \ \text{P} : \\ & \left\{ \begin{aligned} \dot{\tilde{e}}_{d} &= \tilde{\chi}_{1} \tilde{e}_{d} + \hat{\chi}_{1} \tilde{e}_{d} + \tilde{\chi}_{1} \dot{i}_{dref} + \hat{\chi}_{1} \dot{i}_{dref} + \\ & n_{p} \omega_{m} \tilde{e}_{q} + n_{p} \omega_{m} \dot{i}_{qref} + \frac{1}{L} u_{d} \\ \dot{\tilde{e}}_{q} &= \tilde{\chi}_{1} \tilde{e}_{q} + \hat{\chi}_{1} \tilde{e}_{q} + \tilde{\chi}_{1} \dot{i}_{qref} + \hat{\chi}_{1} \dot{i}_{qref} - n_{p} \omega_{m} \tilde{e}_{d} - \\ & n_{p} \omega_{m} \dot{i}_{dref} + n_{p} \omega_{m} \tilde{\chi}_{2} + n_{p} \omega_{m} \hat{\chi}_{2} + \frac{1}{L} u_{q} \end{aligned}$$
(3)

定理:对于满足假设1的永磁同步数学模型 (1),尽管模型中存在未知的参数,通过选择控制 输入 $u_d = \hat{L}u_d^*$, $u_q = \hat{L}u_q^*$,使得 \tilde{e}_d 、 \tilde{e}_q 收敛于0。 其中, u_d^* 、 u_q^* 如式(4)所示。

$$\begin{cases} u_d^* = -k_d \tilde{e}_d - \hat{\chi}_1 \tilde{e}_d - \hat{\chi}_1 i_{dref} - n_p \omega_m \tilde{e}_q - n_p \omega_m i_{qref} \\ u_q^* = -k_q \tilde{e}_q - \hat{\chi}_1 \tilde{e}_q - \hat{\chi}_1 i_{qref} + n_p \omega_m \tilde{e}_d + n_p \omega_m i_{dref} - n_p \omega_m \hat{\chi}_2 \end{cases}$$

$$\tag{4}$$

满足 $k_d > 0$, $k_q > 0$, 同时估计的参数 $\hat{\chi}_1 \, \hat{\chi}_2 \, \hat{L}$ 取如式(5)自适应律:

$$\begin{cases} \hat{\hat{\chi}}_{1} = i_{dref} \tilde{e}_{d} + i_{qref} \tilde{e}_{q} + \tilde{e}_{d}^{2} + \tilde{e}_{q}^{2} \\ \hat{\hat{\chi}}_{2} = n_{p} \omega_{m} \tilde{e}_{q} \\ \hat{\hat{L}} = -u_{d}^{*} \tilde{e}_{d} - u_{q}^{*} \tilde{e}_{q} \end{cases}$$
(5)

证明:取李雅普诺夫能量函数为 $V = \frac{1}{2}\tilde{e}_d^2 + \frac{1}{2}e_q^2 +$

$$\begin{split} \frac{1}{2}\tilde{\chi}_{1}^{2} + \frac{1}{2}\tilde{\chi}_{2}^{2} + \frac{1}{2L}\tilde{L}^{2}, \quad \bigvee |\dot{V} = \tilde{e}_{d}\dot{e}_{d} + \tilde{e}_{q}\dot{e}_{q} + \tilde{\chi}_{1}\dot{\chi}_{1} + \tilde{\chi}_{2}\dot{\chi}_{2} + \\ \frac{1}{L}\tilde{L}\dot{L}, \quad 将式(2) 代人 \dot{V} 得到: \\ \dot{V} = \tilde{e}_{d}(\tilde{\chi}_{1}\tilde{e}_{d} + \hat{\chi}_{1}\tilde{e}_{d} + \tilde{\chi}_{1}i_{dref} + \hat{\chi}_{1}i_{dref} + \hat{\chi}_{1}i_{dref} + \\ n_{p}\omega_{m}\tilde{e}_{q} + n_{p}\omega_{m}i_{qref} + \frac{1}{L}u_{d}) + \tilde{e}_{q}(\tilde{\chi}_{1}\tilde{e}_{q} + \\ \hat{\chi}_{1}\tilde{e}_{q} + \tilde{\chi}_{1}i_{qref} + \hat{\chi}_{1}i_{qref} - n_{p}\omega_{m}\tilde{e}_{d} - n_{p}\omega_{m}i_{dref} + \\ n_{p}\omega_{m}\tilde{\chi}_{2} + n_{p}\omega_{m}\hat{\chi}_{2} + \frac{1}{L}u_{q}) + \tilde{\chi}_{1}\dot{\chi}_{1} + \tilde{\chi}_{2}\dot{\chi}_{2} + \frac{1}{L}\tilde{L}\dot{L} \end{split}$$
(6)

其中,取 $u_d = \hat{L}u_d^*$,则 $\frac{1}{L}u_d = \frac{\hat{L}}{L}u_d^* = u_d^* - \frac{\tilde{L}}{L}u_d^*$;取 $u_q = \hat{L}u_q^*$,则 $\frac{1}{L}u_q = \frac{\hat{L}}{L}u_q^* = u_q^* - \frac{\tilde{L}}{L}u_q^*$,并将式(4)

及
$$u_d$$
、 u_q 代人 \dot{V} 后变换得:
 $\dot{V} = \tilde{\chi}_1 \tilde{e}_d^2 + i_{dref} \tilde{\chi}_1 \tilde{e}_d + \tilde{\chi}_1 \tilde{e}_q^2 + i_{qref} \tilde{\chi}_1 \tilde{e}_q +$
 $n_p \omega_m \tilde{\chi}_2 \tilde{e}_q - k_d \tilde{e}_d^2 - k_q \tilde{e}_q^2 - \frac{\tilde{L}}{L} u_d^* \tilde{e}_d - \frac{\tilde{L}}{L} u_q^* \tilde{e}_q +$
 $\tilde{\chi}_1 \dot{\chi}_1 + \tilde{\chi}_2 \dot{\chi}_2 + \frac{1}{L} \tilde{L} \dot{\tilde{L}}$
(7)

其中,取 $k_d > 0, k_q > 0$,同时将式(5)代人 $\dot{V} = \tilde{\chi}_1 \tilde{e}_d^2 + i_{dref} \tilde{\chi}_1 \tilde{e}_d + \tilde{\chi}_1 \tilde{e}_q^2 + i_{qref} \tilde{\chi}_1 \tilde{e}_q +$ $n_p \omega_m \tilde{\chi}_2 \tilde{e}_q - k_d \tilde{e}_d^2 - k_q \tilde{e}_q^2 - \frac{\tilde{L}}{L} u_d^* \tilde{e}_d - \frac{\tilde{L}}{L} u_q^* \tilde{e}_q +$ $\tilde{\chi}_1 (-i_{dref} \tilde{e}_d - i_{qref} \tilde{e}_q - \tilde{e}_d^2 - \tilde{e}_q^2) +$ $\tilde{\chi}_2 (-n_p \omega_m \tilde{e}_q) + \frac{1}{L} \tilde{L} (u_d^* \tilde{e}_d + u_q^* \tilde{e}_q) =$ $-k_d \tilde{e}_d^2 - k_a \tilde{e}_a^2$,证毕 \circ

3 仿真分析

本文采用内置式永磁同步电机模型,通过 Matlab/Simulink 软件搭建的仿真系统如下图 2 所示,参 数设定为:额定电压 V_{dc} = 311 V,额定电流 I_d = 20 A, 绕组电阻 $R = 0.18 \Omega$, 电枢电感 L = 0.00167 H, 永 磁磁链为 $\varphi_{f} = 0.0714394$ Wb,转动惯量 J = 0.003 kg · m^2 ,粘性阻尼系数 B = 0.008 N/m/s,仿真设置:定 步长 10⁻⁵ s, 选取 Powergui 专用仿真设定, 使用 Tustin 求解器选取仿真时间 0.3 s。该仿真系统包括 电流环和速度环,其中速度环使用传统的 PI 控制算 法, 电流环的 d、q 轴控制运用参数自适应控制算 法,设定仿真参考转速为1000 r/min,带载1 Nm, 速度环控制结构和参数不变,改变电流环控制器(分 别为传统 PID 和参数自适应在 $i_d = 0$ 控制策略下,如 上图 2 所示),其中传统 PID 控制器中 $d_{x}q$ 轴控制 参数保持不变, d 轴 PI 控制器参数选择分别为比例 控制增益 k_{pd} = 30、积分控制增益为 k_{id} = 2400; q 轴 PI 控制器比例控制增益 $k_{pq} = 10$ 、积分控制增益 $k_{iq} =$ 2400。本控制算法(PA)将参数的初始条件分为初始 值较大和较小两种情况分别进行仿真分析。

情形 1:本控制算法参数:选择初始条件 $\chi_1(0) = -1.3, \chi_2(0) = -2.5, L(0) = 0.0; 增益参数 <math>k_d = 19834, k_q = 20000;$

图 2 系统仿真模型

图 3 q 轴电流误差仿真结果

从图 3 可以看出: 在电机起动瞬间, 传统 PID 算法引起的速度环输出的 q 轴期望电流与实际电流 误差(*pid*_{error})约为 25 A 超调, 电机运行稳定后的稳 态误差约为 1.0 A, 本控制算法(*pa*_{error})在电机起动 瞬间超调约为 15 A, 电机运行稳定后的稳态误差约 为 0.3 A, 而两种算法作用在控制系统调节时间相 当。同时, 两种算法控制 *d* 轴电流时(如下图 4 所 示)在电机起动瞬间基本没有引起超调, 然而在电机 运行稳定后传统 PID 控制稳态误差浮动约为 3 A 比 本控制算法 0.6 A 大。

情形 2:选择初始条件 $\chi_1(0) = -20, \chi_2(0) = -23, L(0) = 5; 增益参数 <math>k_d = 19834, k_a = 20000;$

同理,在改变参数的初始条件而控制参数不变时,从图5可以看出:在电机起动瞬间,传统 PID 算法引起的速度环输出的 q 轴期望电流与实际电流 误差(*pid*_{error})约为 26 A 超调,电机运行稳定后的稳 态误差约为 1.25 A,本控制算法在电机启动瞬间引 起的(pa_{error})超调约为15.5 A,电机运行稳定后的稳态误差约为0.4 A,两种算法作用在控制系统调节时间相当。在 d 轴电流控制时(如图 6 所示),在电机运行稳定后传统 PID 控制稳态误差浮动约为4 A 比本控制算法1 A 大。

通过以上分析可知,两种控制算法控制结果均 造成了 d、q 轴电流的波动,原因是来自控制系统本 身的响应迟滞及速度环输出的指令电流波动造成的, 然在相同的速度环控制结构下,本控制算法在电机 相电阻、相电感、转子磁链等参数未知的情况下对 电流环进行控制,相比于传统的不依赖模型的传统 PID 控制,在电机的起动过程引起 q 轴电流的超调 及电机运行稳定后 d、q 轴电流的稳态误差方面优于 PID 控制,最终使电机输出的力矩更平稳。另外, 在该仿真系统中被控对象实际电机模型相对于式 (1)的理论模型实质上也存在固定的扰动,因此即 使系统存在扰动的情况下,本控制算法较传统的 PID 算法具有明显的优势。

4 结 论

本文以永磁同步电机旋转 d、q 轴数学模型为研 究对象,考虑到实际模型中的参数未知性因素,运 用李亚普诺夫稳定性理论及参数自适应方法,设计 一种控制算法,该算法消除模型未知参数甚至控制 输入存在乘积未知项的情况下带来的影响,不仅仅 适应 i_d = 0 控制,也能够很容易拓展到弱磁控制等应 用,对参数的初始的选择不依赖,可以推广至无刷 电机、感应电机等电机控制领域中使用。

参考文献

- [1] 刘细平,胡卫平,张云,等. PMSM 多参数辨识方法的研究[J]. 电力电子技术, 2020, 54(8): 8-10.
- [2] 李宏韬,李红梅. PMSM 驱动系统的无模型电流预测控制[J]. 微特电机, 2016, 44(10): 50-53.
- [3] 石建飞, 戈宝军, 吕艳玲, 等. 永磁同步电机在线参数辨识方 法研究[J], 电机与控制学报, 2018, 22(3): 17-24.

(下转第82页)

某型飞机牵引车的电机矢量控制研究

王福泰¹,齐向阳¹,李韶亮²,刘学文¹,苏军豪¹,郑艳超¹

(1. 中国农业机械化科学研究院集团有限公司, 北京 100083;

2. 空装驻北京地区第六军事代表室,北京100083)

摘 要: 飞机牵引车自身质量大,工作过程中惯性大,应用环境复杂,驱动系统抗干扰和可靠的控制能力对提升飞 机牵引车的性能有着非常重要的影响。本文针对永磁同步电机作为牵引车驱动电机并开展研究,设计出一种基于模 糊 PI 控制的电流解耦双闭环电机矢量控制方法。运用 Matlab 软件搭建电机控制系统模型,分别对常规 PI 控制和模 糊 PI 控制的参数变化开展仿真实验和性能分析。对比实验表明,模糊 PI 电机矢量控制器适应性强,响应速度快, 具有良好的控制稳定性。

关键词:永磁同步电机;矢量控制;模糊 PI 控制 中图分类号:TM351;TM341;TP273 文献标志码:A 文章编号:1001-6848(2023)10-0059-07

Research on Motor Vector Control of a Type of Aircraft Tractor

WANG Futai¹, QI Xiangyang¹, LI Shaoliang², LIU Xuewen¹, SU Junhao¹, ZHENG Yanchao¹

(1. China Academy of Agricultural Mechanization Sciences Group Co., Ltd., Beijing 100083, China;

2. The Sixth Military Representative Office of the Air Force in Beijing, Beijing 100083, China)

Abstract: The aircraft tractor itself has a large mass, high inertia during operation and a complex application environment. The anti-interference and reliable control capability of the drive system has an important impact on improving the performance of the aircraft tractor. In this paper, the permanent magnet synchronous motor was studied as the tractor drive motor and carried out research to design a current decoupling double closed loop motor vector control method based on fuzzy PI control. The motor control system model was built with Matlab software, and the simulation experiment and performance analysis were conducted on the parameter changes of conventional PI control and fuzzy PI control respectively. The comparison experiments show that the fuzzy PI motor vector controller has strong adaptability fast response speed and good control stability. **Key words**: permanent magnet synchronous motor; vector control; fuzzy PI control

0 引 言

飞机牵引车在工作时经常需要牵引大载荷飞机, 牵引过程为低速大扭矩输出工况,对自身驱动系统 可靠性要求较高。永磁同步电机在电动车辆中具有 广泛的应用,作为驱动装置^[1],永磁同步电机相比 其他类型电机具有工作效率高、转矩脉动小、安全 稳定性高和维护成本低的优点^[2]。所以本文选用永 磁同步电机作为飞机牵引车驱动系统的研究对象。

永磁同步电机的矢量控制是将交流电机的定子

相电流转换为两个相互垂直电流分量的方法^[3]。主 要原理是把交流同步电机模拟直流电机完成转矩输 出,通过系统坐标变换将交流同步电机的三相定子 电流分解为相互独立的励磁电流分量和转矩电流分 量,分别进行调节和控制,实现转矩的输出^[4]。矢 量控制具有更好的控制系统的动态性能和电磁转矩 响应,相比较其它的电机控制方法提高了电机的控 制效率和执行速度,增强了电机转矩输出的环境适 应性,具有优越的运行特性。

收稿日期: 2023-03-23

作者简介:王福泰(2000),男,硕士研究生,研究方向为特种车辆。 齐向阳(1970),男,研究员,研究方向为特种车辆。 李韶亮(1984),男,硕士,研究方向为特种车辆。 刘学文(1989),男,硕士,研究方向为特种车辆。 苏军豪(2000),男,硕士研究生,研究方向为特种车辆。 郑艳超(1991),女,硕士,研究方向为特种车辆。

1 永磁同步电机建模

永磁电机是一个复杂的多变量耦合系统,为方 便开展研究,现考虑做出以下假设:

(1)电机定子绕组各相呈连续正弦分布,在运行时产生定幅度恒速旋转磁场;

(2)忽略磁极饱和、杂散损耗、磁滞影响和涡 流损耗;

(3)忽略温度对电机系统的影响。

首先根据电机特性得到永磁同步电机的三相定 子电压方程^[5]为

$$\begin{bmatrix} u_{a} \\ u_{b} \\ u_{c} \end{bmatrix} = \begin{bmatrix} R_{s} & 0 & 0 \\ 0 & R_{s} & 0 \\ 0 & 0 & R_{s} \end{bmatrix} \begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \end{bmatrix} + p \begin{bmatrix} \lambda_{a} \\ \lambda_{b} \\ \lambda_{c} \end{bmatrix}$$
(1)

式中, p 为微分算子, R_s 为定子相绕组电阻, u_a 、 u_b 、 u_c 为三相电压, i_a 、 i_b 、 i_c 为三相电流, λ_a 、 λ_b 、 λ_c 分别为三相磁链。三个定子磁链中每一个都 由两个独立的磁链源来提供, 两个磁链分别为定子 电流和磁极。

在数学上推导出三绕组电机的等效双绕组电机 模型,等效电机性能与三项永磁同步电机相同,其 定子有两个绕组,轴距为90°,在钉子槽中呈正弦分 布,参考坐标表系如图1所示^[6]。

根据 a - b - c 坐标系下的三相定子电压方程, 经过坐标变换可以得到转子参考坐标系下的电机电 压方程为

$$\begin{bmatrix} u_d \\ u_q \end{bmatrix} = \begin{bmatrix} R_s & -\omega_e L_q \\ \omega_e L_d & R_s \end{bmatrix} \begin{bmatrix} i_d \\ i_q \end{bmatrix} + p \begin{bmatrix} \lambda_d \\ \lambda_q \end{bmatrix}$$
(2)

式中, ω_e 为瞬时电转子转速, L_q 、 L_d 为d、q轴电 感, λ_d 、 λ_q 为d、q轴磁链。由此得到电机的转矩方 程为

$$T_{e} = \frac{3}{2} p \left[\lambda_{m} + (L_{d} - L_{q}) i_{d} \right] i_{q}$$
(3)

式中, p 为极对数, λ_m 为最大相磁链。转子 d、q 轴 的电压方程分别受速度电压 $\omega_e L_q i_q$ 、 $\omega_e L_d i_d$ 交叉耦合 作用影响,现将电压方程线性化,引入各轴非线性 电压项,使 d 轴电压仅取决于 i_d , q 轴电压仅取决于 i_q 。解耦电流控制流程如图 2 所示, d 轴和 q 轴电压 指令分别由如下两个信号的组合提供, u_d^* 为 d 轴输 出电压, u_a^* 为 q 轴输出电压,其组成结构分别为

图 2 解耦电流控制框图

系统的输入信号为 i_a^* 和 i_q^* ,分别与反馈电流 i_a 和 i_q 进行比较,确定电流误差,实现 d 轴和 q 轴电 压的独立输出,从而控制输出电磁转矩变化。同时, 根据控制理论来设计控制系统,逆变器调试方式采 用了 SVPWM 技术。

电机的双闭环矢量控制系统原理图如图3所示。

2 电机控制策略分析

PID 控制具有结构设计简单,线性控制稳定的 特点,普遍应用在工业控制的各个领域^[7],PID 控 制器设计容易,应用范围广,在线性常量变化的控 制系统中具有良好稳定的控制效果。

2.1 模糊控制

模糊控制是一种由常规 PID 控制拓展的智能控制策略。控制系统的主要特点是不需要精确的物理 学模型,只是需要根据现场大量的操作数据和熟练 的经验总结出控制逻辑和规则,在不断变化的系统 条件下,能够相应改变控制参数,具有良好的非线 性控制效果。

模糊控制系统由输入输出回路、模糊控制器、 被控对象、反馈机构和执行机构组成^[8],基本结构 如图4所示。

图 4 模糊控制系统结构框图

2.2 模糊 PI 控制器的原理

模糊控制通过设置模糊规则和逻辑,根据输入 误差和误差变化率的变化完成对 *K*_p、*K*_i 两个参数进 行调整^[9],通常情况下,PI 模糊控制器具有常规 PI 控制器不具备的环境适应性和抗干扰能力。模糊控 制结构如图 5 所示。

2.3 模糊 PI 控制器设计

首先确定输入输出变量的论域,根据系统控制 参数,误差 e 和误差变化率 ec 的论域都取为 [-10,10],比例 K_p和积分 K_i论域取为[-1,1]。

然后设定模糊规则,对输入变量进行模糊化。 通过多次现场操作调试及数据分析,归纳出 PI 控制 器的 K_n、K_i 的取值于偏差的关系:

(1)如果误差 e 较大, K_p 应在论域范围内取较 大值,提升系统控制速率,同时为避免响应速度过 快而导致控制不稳定, K_i 应在适当范围内取较小值;

(2)如果误差 e 为中等范围时, K_p 应在论域范 围内取较小值; K_i 应在论域范围适当取较大值,提 高响应速度,优化控制效果;

(3)如果误差 e 较小, K_p和 K_i系数应在论域的 小范围中取较大值,提高系统的抗干扰能力,降低 控制超调量; (4)如果误差 e 接近零, K_p 取值增大, K_i 取较 小值, 维持系统稳定。

通过描述比例和积分控制参数随误差 e 数值的 变化关系,结合分析误差变化率 ec 对电机控制的影 响,得到比例、积分参数 ΔK_p 、 ΔK_i 的模糊控制规 则,其中 e、ec、 ΔK_p 、 ΔK_i ,对应的模糊集合均取 为{NH, NM, NL, ZO, PL, PM, PH},它们分别 表示变量模糊集合的负大、负中、负小、零、正小、 正中、正大。

根据操作调试及经验总结制定模糊规则表, *K*_p 模糊规则如表1所示, *K*_i模糊规则如表2所示。

表 1 ΔK_{0} 模糊控制规则

	ec						
e	NH	NM	NL	ZO	PL	PM	PH
NH	PH	PH	PM	PM	PL	ZO	ZO
NM	\mathbf{PH}	PM	PM	PL	PL	ZO	NL
NL	PM	PM	PM	PL	ZO	ZO	NL
ZO	PM	PL	PL	ZO	NL	NM	NM
PL	PL	ZO	ZO	NL	NL	NM	NM
PM	PL	ZO	NL	NM	NM	NM	NH
PH	ZO	ZO	NM	NM	NM	NH	NH

表 2 ΔK_i 模糊控制规则

	ec						
е	NH	NM	NL	ZO	PL	PM	PH
NH	NH	NH	NM	NM	NL	ZO	ZO
NM	NH	NH	NM	NL	NL	ZO	ZO
NL	NH	NM	NL	NL	ZO	PL	ZO
ZO	NM	NM	NL	ZO	PL	PM	PL
PL	ZO	NL	ZO	PL	PL	PM	PM
PM	ZO	ZO	PL	PL	PM	\mathbf{PH}	PH
PH	ZO	ZO	PL	PM	PM	PH	PH

选用合适的隶属函数对模糊控制准确度有着重 要的影响。隶属度函数斜率越大,准确度越高,但 会降低输出响应效果,影响控制平顺性。因此根据 输入变量与输出变量的差异性,采用不同的隶属度 函数,提高可控范围,输入的模糊变量选择正态分 布的隶属度函数,反应效果更为平顺,易于后续细 化模糊逻辑。三角隶属度转化函数具有准确度高, 响应速度快的优点,采用三角隶属度函数作为输出 的模糊变量。

最后根据模糊规则推理出模糊变量,对模糊变 量进行清晰补偿处理。

根据输出隶属度函数,确定出具体的输出控制 量,实现对电机系统的反馈控制。

3 电机控制系统仿真

根据控制电机的参数及矢量控制方法对应关系 对控制模型进行搭建,电机参数如表3所示。

参数 参数值 2000 额定转速 n/(r/min) 动力输出扭矩 T^* / Nm 26.3 制动扭矩 T_n/Nm 60 4 极对数 p 阻尼系数 B/(N/m/s) 0.008 d 轴电感 L_d/mH 6.25 q 轴电感 L_a/mH 6.25 定子电阻 R_s/Ω 1.8 磁链 φ/wb 0.2

矢量电机控制系统包含转速调节模块、电流调 节模块、电流解耦模块、空间矢量脉宽调制技术和 模拟电机模块。通过对控制参数的整定、比例积分 算法以及电流解耦数据分析将电机模型导入 Simulink, 永磁同步电机矢量控制系统模型如图 6 所示。

根据电机的性能参数及控制方法,为模拟飞机 牵引车的真实工况,检验电机控制系统运行是否平 稳,控制是否可靠。在驱动电机额定转速状态下针 对电机常规 PI 控制和模糊 PI 控制系统进行突增负载 和突降负载控制的实验,仿真实验如下:

图6 矢量控制模型

(1)突增负载:对电机进行空载起动(T=0 Nm),电机从0r/min加速到2000r/min,随后转速 到达稳态后增加负载(T=20 Nm),设定转速维持不 变,记录电机三相电流、转矩和转速变化。

由图 7~图9 突增负载电机参数变化可知,电机 空载起动,定子电流达到最高输出 26.8 A,电机转 矩开始上升直至额定值,转速在起动后同步开始上 升。并在 0.04 s时电机转速达到设定值 2000 r/min, 定子三相电流从 26.8 A 下降至 2 A。电机进入稳定 状态,电磁转矩同步下降,直至转矩降至空载摩擦 转矩 0.95 Nm。

图9 转速变化图

在 0.15 s 时开始加入负载转矩,受负载影响定子 电流由 2 A 上升至 20.8A,转矩响应从 0 Nm 上升至 20.95 Nm;电机转速通过反馈控制在出现略微下降后, 快速恢复至设定转速,随后进入稳定输出状态。模糊 PI 控制器在突增负载实验中,电机控制系统能够快速 做出响应,转矩跟随负载转矩输出效果良好,转速 快速恢复设定值,使电机控制系统保持稳定状态。

(2)突降负载:对电机进行带载起动(*T* = 12 Nm), 电机从 0 r/min 加速到 2000 r/min,随后转速到达稳 态后降低负载(*T* = 0 Nm),初始设定转速保持恒定, 记录电机三相电流、转矩和转速变化。

为检验驱动电机矢量控制系统在实际工作中的 卸荷控制能力,接下来对控制系统进行降载仿真实 验。由图 10~图 12 电机参数变化可知,定子电流在 电机带载起动后达到最高输出 26.8 A,带载扭矩为 12 Nm,为维持最大转矩使电机正常起动,电机转矩 迅速上升至额定值,电机转速同步开始增大。在 0.04 s 时电机转速达到设定值 2000 r/min,电机平稳起动后,

图 12 转速变化图

在 0.15 s 时控制系统负载转矩开始从 12 Nm 下降到 0 Nm,定子电流同步降低至空载输出值,电机转矩快速下降并稳定在 0.95 Nm;电机转速经控制算法反馈在略微上升后快速响应,恢复至给定转速值 2000 r/min。模糊 PI 控制器在进行突降负载实验过程中,输出转矩随负载转矩的变化而改变,转速经电机反馈控制响应速度更快,电机系统能够到达并维持预设转速的稳定值。通过对两种控制方式的电流、转矩和转速比较,在突增负载的情况下,模糊 PI 控制响应速度更快,控制表现更好。

4 性能试验

本文研究的飞机牵引车采用三轮结构前轮驱动 转向的形式,整车结构布局如图13所示。

1.驱动轮; 2.电机驱动器; 3.电池组; 4.配电箱; 5.从动轮; 6.DCDC模块; 7.电动绞盘; 8.整车控制器; 9.承载转动托盘

图 13 某型飞机牵引车设备总体布局 运用 Codesys 软件对驱动电机控制算法软件进行 设计与调试,电机调试现场如图 14 所示。

图 14 电机调试现场

开展基础性能试验是验证飞机牵引车驱动电机 行驶及控制效果最有效的方法。试验过程选择平直 的路面上进行,检验电机运行时电机矢量控制系统 的控制效果,试验场地如图15 所示。

图 15 飞机牵引车及试验场地

转速试验对比电机分别在 PI 控制及模糊 PI 控制 下电机的响应情况,主要实施过程如下:

(1)设定电机最高转速为 2000 r/min, 在牵引车 电机起动后进行加速;

(2)在牵引车到达最高速度后,维持自身最高额定转速输出继续匀速行驶一段距离;

(3)最后进行匀减速运动,直至车辆停止。

整个试验工况过程中通过 CAN-BUS 数据分析仪 对速度响应情况进行记录。

PI 控制器电机矢量控制转速响应情况如图 16 和 图 17 所示。

图 16 PI 控制电机转速响应

PI 控制下电机转速变化如图 16 所示,牵引车电 机在起动后 12 s 开始运行,首先进行间断式加速测 试,牵引车驱动电机在加速过程中实际转速能达到 给定转速效果,加速至第 22 s,驱动电机到达设定 最高转速 2000 r/min,并在第 22 s~68 s 期间电机速 度保持恒定,实际转速值平均为 2007.64 r/min,第 68 s 开始减速,实际转速开始下降直至停车。由图 17 误差率变化可得,整个工况中电机在速度上升和 速度下降过程中给定转速与实际转速误差率变化略 为明显,误差率最高为 2.6 %,有明显滞后现象, 匀速过程中误差率平均值在 0.0047 %,电机转速响 应速度较慢。

图 17 PI 控制转速误差率变化

模糊 PI 控制器电机矢量控制转速响应情况如图 18 和图 19 所示。

图 18 PI 控制转速电机响应

图 19 模糊 PI 控制转速误差率

模糊 PI 控制下电机转速变化如图 18 所示,牵引 车电机在起动后 5 s 开始运行,首先进行间断式加速 测试,加速过程中实际转速能达到给定转速效果,随 后在第 15 s 时牵引车到达设定最高转速 2000 r/min, 第 15 s ~ 50 s 期间牵引车速度恒定,实际转速值平 均为 2005.64 r/min,第 50 s 开始减速,实际转速开 始下降直至停车。由图 19 误差率变化可得,整个工 况中电机在速度上升和速度下降过程中给定转速与 实际转速误差变化略为明显,误差率最高为1%, 明显改善了电机的响应滞后现象,主观评价在驾驶 过程中影响不大,匀速过程中误差率平均值在 0.0021%,转速控制效果较好。同时,在驾驶过程 中电机速度反馈平顺,模糊 PI 控制具有更好的控制 效果。

5 结 论

本文通过结合飞机牵引车工况选用永磁同步电 机并分析电机矢量控制的原理,建立永磁同步电机 双闭环控制系统物理模型,基于模糊控制,设计了 电机矢量控制系统。然后对 PI 控制和模糊 PI 控制两 种不同的电机控制方法分别进行了仿真分析和性能 试验,通过比对实验证明,模糊 PI 电机矢量控制在 飞机牵引车应用中具有更好的控制精度和稳定性, 为后续针对飞机牵引车等大扭矩特种车辆驱动电机 控制系统的应用提供参考依据。

参考文献

- [1] 石峰,史晓燕.电动汽车用永磁同步电动机控制器全数字解决 方案[J].科技创新导报,2007(34):8-10.
- [2] 吕从鑫,汪波,陈静波,等. 永磁同步电机控制策略综述与展望[J]. 电气传动自动化, 2022, 44(4): 1-10.
- [3] 周立,苏美霞,王杰. 永磁同步电机模糊多矢量模型预测控制[J]. 电气工程学报, 2022, 17(4): 181-192.
- [4] 何炜康,刘政,胡勤丰. 永磁同步电机改进弱磁策略[J]. 微 电机,2022,55(7):52-59.
- [5] 苏颖毅. 电动车用永磁同步电机弱磁控制策略研究[J]. 佳木 斯大学学报(自然科学版), 2012, 30(6): 805-809.
- [6] 董俊皓,张永成,李彦林. 基于模糊 PI 自整定的永磁同步电机控制方法研究[J]. 工业控制计算机,2022,35(7):161-162.
- [7] 王飚,林少军,柯吉.带有滑模观测器的永磁同步电机改进型 PID 控制[J].微电机,2021,54(7):66-72.
- [8] 牛里,杨明,刘可述,等. 永磁同步电机电流预测控制算法[J]. 中国电机工程学报,2012,32(6):131-137.
- [9] 卞延庆,庄海,张颖杰.基于模糊 PI 的永磁同步电机矢量控制研究[J].微电机,2015,48(11):62-66.

独立光伏发电系统中逆变器方案的选择与设计

邱 燕

(陕西国防工业职业技术学院,西安710300)

摘要:本文主要阐述了逆变器的方案选择及其控制实现,详细阐述了高频升压逆变器方案选择与构成的理论依据。在此基础上,对高频升压逆变器的电路与控制进行了设计,给出了逆变器控制流程。
 关键词:光伏;发电系统;逆变器;设计
 中图分类号: TM464; TU 201.5
 文章编号: 1001-6848(2023)10-0066-04

Selection and Design of Inverter Scheme in Independent Photovoltaic Power Generation System

QIU Yan

(Shaanxi Institute of Technology, Xi' an 710300, China)

Abstract: This paper mainly described the scheme selection and control implementation of inverter, and expounded the theoretical basis of the scheme selection and composition of high frequency boost inverter in detail. On this basis, the circuit and control of the high frequency boost inverter were designed, and the inverter control process was given.

Key words: photovoltaic; power generation system; inverter; design

0 引 言

太阳能电池板在阳光照射下,产生电压很低的 直流电^[1]。即使是采用伏电池阵列,从工程易实现 角度,一般也只能提供数十伏的电压。然而,我们 日常接触的家用电器均为 220 V 交流电。目前,太 阳能光伏发电系统的新的发展趋势之一是将多余电能 向交流电网输送,这就需要将低压直流电能变换为较 高压的交流电能^[2],逆变器则是实施这种变换的 核心。

独立光伏发电系统中逆变器的方案 选择

独立太阳能光伏发电系统的逆变器,有多种实现 方案。但是,在方案选择以及工程实现过程中,首先应 明确额定输出容量、输出电压及输出频率的稳定度、整 机效率、启动性能和保护功能这些基本要求^[3]。

就输出波形类型而言,工频逆变选择正弦波逆变 器方案。因为正弦波逆变器通过 SPWM(正弦脉冲宽 度调制)或 SVPWM(电压空间矢量脉宽调制)方法^[4], 产生的输出波形如图1所示。正弦波逆变器,输出的 是标准的正弦波交流电,不会给电网带来谐波污染。

图 1 正弦波逆变器的输出波形

就逆变器的电源性质而言,选择电压型逆变器 方案。因为电压型逆变器的直流侧为电压源性质, 一般直流侧并联容值较大的直流滤波电容 C,如图 2 所示。其逆变器的输出电压波形为矩形波(若是正弦 波逆变器,输出波形则为宽度按照正弦规律变化的 多个矩形脉冲),而输出电流波形则为正弦波。相对 于电流型逆变器,电压型逆变器的输出电流为正弦 波,并且逆变装置体积小、重量轻、易控制^[5]。

图 2 电压型逆变器

作者简介: 邱 燕(1981), 女, 副教授, 硕士, 研究方向为微电机控制, 新能源技术。

就逆变系统的组成结构而言,选择高频升压式 逆变器,从图3中可以看出,该系统相较于工频升 压式逆变器系统组成相较复杂,多出了高频逆变和 整流两部分电路。但是,其技术先进,隔离采用的 是高频变压器,装置的体积、重量和噪音会明显减 小,转换效率也比较高,可达90%以上^[6]。因此, 对于独立光伏发电系统,这种方式的逆变器系统无 疑具有很大选择优势。

图 3 高频升压式逆变器

就逆变器的电路拓扑而言,高频逆变部分选择 推挽式、工频逆变部分则选择全桥式电路的实现方 案。这样选择的原因在于:

① 推挽式逆变器的电路拓扑如图 4 所示。从图 中可以看出,推挽式逆变器的电路并不复杂,而且 相较于半桥逆变器电路拓扑,其输出得到的是输入 的全部电压,直流电源的电压利用率高、容易输出 较大的功率,并且输出波形较好^[7]。同时,由于其 电路拓扑中两个开关管的源极连接在一起,是同电 位,两个开关管又是交替互补方式工作的,开关管 的驱动电路实现就变得相对很简单^[8]。

② 与全桥逆变器相比,在输出得到同是输入的 全部电压时,推挽式逆变器对于直流电源的电压利 用率高、容易输出较大的功率,并且输出波形较好。

图4 推挽电路拓扑

③对于工频逆变部分,由于面对的是高频变压器 升压后的高压,故选择全桥式电路方案,其开关管在 工作中只承受直流电源电压。例如,Q1 与Q4 导通 时,由电路不难看出,处于关断状态的Q2 与Q3 分别 只承受直流电源电压。同样,Q2 与Q3 导通时,处于 关断状态的Q1 与Q4 分别也只承受直流电源电压。

图 5 全桥电路拓扑结构

综上所述, 逆变器实现方案选择确定为: 高频 逆变部分选择推挽式、工频逆变部分选择全桥式的 电压型高频升压式正弦逆变器。

2 高频升压式逆变器设计

2.1 逆变器的性能指标要求

本文实验系统中,高频升压式逆变器的具体性 能指标要求为

输入电压: DC 10~15.5 V; DC 20~30 V; 输 出电压: 220 V±5%; 持续输出功率: 120 W; 输出 频率: 50 Hz±1 Hz。

2.2 高频升压式逆变电路

高频逆变电路设计为推挽结构(T1、T2),工作 频率为20kHz。高频逆变后经高频升压变压器B1升 压为约280V~450V的交流电,再通过桥式高频整 流与滤波后,得到约400V左右的高压直流电。最 后的工频逆变部分则设计为全桥逆变电路(T3、T4、 T5、T6),逆变为220V/50Hz的交流电,供给交流 负载使用。

如果需要与交流电网并网发电,只需输出与220 V 的电网链接即可。当然,这种情况下还需要开发一 定的安全并网设施与控制程序。

高频升压变压器采用的是高频磁芯材料,大大 减小了逆变系统装置的体积与重量,使得逆变系统 装置的功率密度得到很大提升^[9]。

2.3 逆变器的控制设计

对于高频升压逆变器的推挽电路部分,由于该 电路只需实施高频方波逆变,控制简单,但工作频 率、时间要求高,故采用专门硬件控制板实施单独 控制。

工频逆变部分采用正弦波 PWM 调制技术^[10], PWM 逆变器控制系统在高频时,三角波发生电路容 易受温度、器件性能等因素干扰,从而导致输出电 压中出现直流偏移、谐波含量增加、死区时间变化 等不利影响,故采用单片机实施以改善输出波形的 性能。

单片机采用 STC12C5A60S2, 它是高速、低功 耗、超强抗干扰的增强型 8051 系列单片机, 指令代 码与传统的 8051 完全兼容,但速度快 8 - 12 倍^[11]。 内部集成有 MAX810 专用复位电路、2 路 PWM、8 路高速 10 位 A/D 转换(250K/S)、7 路外部中断 L/O 口以及 4 个 16 位定时器,采用全双工异步串行通 信,通过定时器或 PCA 文件实现还可实现多路通 信。并且支持 ISP(系统可编程)与 IAP(应用可编 程),无需专用编程器与仿真器,通过串口可直接下 载用户程序,数秒即可完成,应用十分方便。

采用 STC12C5A60S2 的电源电路如图 7 所示。

图 7 单片机电源电路原理图

工频逆变器的正弦逆变输出,采用现今应用比较广泛、且较为成熟的正弦波 PWM 调制技术(SP-WM), SPWM 调制原理如图 8 所示。

图 8 SPWM 调制方法原理

SPWM 的基本技术原理是,三角载波与希望输出的正弦调制波相比较,调制波幅值大于载波幅值时,产生使开关元件的导通控制信号,调制波幅值小于载波幅值时,产生使开关元件的关断控制信号^[12]。

由 SPWM 的基本技术原理可以看出,控制信号 在单片机中很容易产生,技术也比较成熟。在 STC12C5A60S2 中实现的 SPWM 信号子程序流程在 图 9 中给出。

整个逆变器的控制主程序流程如图 9(a) 所示, 图 9(b)是 SPWM 驱动信号的生成流程图,图 9(c) 是在蓄电池未充满电的情况下调用的 MPPT 算法 流程。

需要说明的是,本系统中的单片机,在对逆变

器产生 SPWM 控制信号的同时,还负责对蓄电池的 电压电流进行采样,确定蓄电池的工作状态。因此, 当单片机工作时,首先要对蓄电池的电压电流进行 采样,判断蓄电池是否需要进行充电。需要,则启 用最大功率跟踪 MPPT 程序,采用 DC/DC 变换电路 对蓄电池进行充电;不需要,光伏电池阵列的直流 母线或对直流负载供电,或与逆变器连接,单片机 生成 SPWM 信号,输入驱动控制模块实现逆变,向 交流负载供电。当系统发生故障时,如蓄电池过热、 过充、欠压等,则切断驱动信号,进行故障排除, 系统自动进行复位^[13]。

3 结 语

高频逆变部分选择推挽式、工频逆变部分选择 全桥式的电压型高频升压式正弦逆变器中,高频升 压变压器的高频磁芯材料有效减小了逆变系统装置 的体积与重量,使得逆变系统装置的功率密度得到 很大提升;逆变器采用单片机控制,减小了输出电 压中出现的直流偏移、谐波含量增加和死区时间变 化等不利影响;总体上为将太阳能光伏发电系统中 的多余电能向交流电网输送提供了可行方案。

参考文献

- [1] 范长城,王勇,檀涌.基于太阳能电池板的直流不间断电源设 计[J].电源技术应用,2008(9):25-28.
- [2] 尹忠东. 高压直流供电系统推广应用所涉及的关键技术[J]. 电气应用, 2014(15): 17-18.
- [3] 蒋群. 应用于直流微网系统的移相控制 DC-DC 变换器[D]. 浙 江:浙江大学, 2015:71.
- [4] 黄凯, 王斌. 空间矢量 PWM 控制的三相逆变器的仿真模型[J]. 三峡大学学报(自然科学版), 2006(2): 112-115.
- [5] 赵玲霞,盛海龙.小型风力发电系统正弦波逆变器的设计与实现[J].工业仪表与自动化装置,2014(4):40-42.
- [6] 郑连清,黄金波.三相高频链矩阵式逆变器的 SPWM 混合调制策 略研究[J].华北电力大学学报(自然科学版),2012(4):8-11.
- [7] 高文,肖海峰,乔社娟,等,一种直流高压电源的设计实现[J].自动化与仪表,2010(4):6-8.
- [8] 王效顺,黄惠军,孙静,等,推挽逆变器开关吸收电路研究[J].电气传动,2017(3):78-80.
- [9] 屈艾文,陈道炼.重复控制三相电压型准Z源光伏并网逆变系统[J].电网技术,2017(6):178-181.
- [10] 林东栋. 高频隔离式并网逆变器的研制[D]. 合肥: 合肥工业 大学, 2009: 27.
- [11] 贺小龙,孙慧宇. 基于 STC12C5A60S2 芯片的风力摆控制系统 设计[J]. 电子世界, 2016(2): 76-79.
- [12] 刘华勇.光伏功率预测基本技术原理及关键问题[J].时代农机,2017(10):72.
- [13] 王朕, 史贤俊, 张文广. 基于 DSP1 kW 220 V/50 Hz 光伏逆变 电源的设计[J]. 船电技术, 2012, 10(32): 43-46.

增程式汽车发电机噪声机理分析与控制

黄煜明¹,郭新华¹,李昭代²,陈 昆²,陈瑞培²,陈奋裕²,郭 辉³ (1. 华侨大学 信息科学与工程学院,福建 厦门 361000; 2. 厦门唯质电气科技有限公司,福建 厦门 361000; 3. 上海工程技术大学 机械与汽车工程学院,上海 201620)

摘 要:针对增程式汽车发电机运行过程中噪声过大的问题,通过电磁力波特征阶次分析和振动噪声定位分析,并 提出了相应的优化方案。首先,通过电磁力波特征阶次分析,探讨了电枢反应和永磁体对电磁力波的影响。其次, 通过噪声定位分析,确定了额定工况下噪声的主要成因,并针对该问题提出了改进电机内部转子结构添加转子辅助 槽的方案,优化了电机气隙磁密。最后对电机建模进行有限元振动噪声的仿真分析,评估了优化方案的效果,改进 后电机噪声显著降低。

关键词: 增程式汽车发电机; 电磁振动噪声; 电磁力波特征阶次分析; 振动噪声定位分析; NVH; 有限元仿真 中图分类号: TM301.4+3 **文献标志码**: A **文章编号**: 1001-6848(2023)10-0070-07

Analysis and Control of Noise Mechanism in Range-extended Electric Vehicle Generators

HUANG Yuming¹, GUO Xinhua¹, LI Zhaodai², CHEN Kun², CHEN Ruipei², CHEN Fenyu², GUO Hui³ (1. School of Information Science and Engineering, Huaqiao University, Xiamen Fujian 361000, China;

2. Xiamen Weizhi Electric Technology Co., Ltd., Xiamen Fujian 361000, China;

3. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China)

Abstract: Aiming at the problem of excessive noise during the operation of the generator of the supercharged vehicle, the electromagnetic force wave characteristic order analysis and vibration noise localization analysis were carried out, and the corresponding optimization scheme was proposed. Firstly, through the electromagnetic force wave characteristic order analysis, the influence of the armature reaction and permanent magnet on the electromagnetic force wave was explored. Secondly, through the noise localization analysis, the main causes of the noise under the rated working condition were identified, and the scheme of improving the internal rotor structure of the motor by adding the rotor auxiliary groove was proposed to optimize the motor air-gap magnetism for this problem. Finally, the simulation analysis of finite element vibration noise was carried out on the motor modeling to evaluate the effect of the optimization scheme, and the noise of the motor was significantly reduced after the improvement.

Key words: range-extender automotive generator; electromagnetic vibration noise; electromagnetic force harmonics analysis; vibration noise localization analysis; NVH; finite element simulation

0 引 言

近年来,随着全球汽车产业的迅猛发展,人们

对汽车性能和驾乘体验的要求也日益提高。电机的 NVH 越来越受到消费者关注,电机 NVH 水平逐渐 成为评价一个电机性能重要指标。在众多汽车技术

收稿日期: 2023-08-09

基金项目:国家重点研发计划"新能源汽车"专项-"基于自主核心器件的先进电机控制器研发"项目的子课题"薄膜电容介质电场击穿机理及长期高温衰变特性研究"(2022YFB2502802);国家自然科学基金面上项目(52277049);福建省高校产学合作项目(2022H6026)。

作者简介: 黄煜明(1999), 男,硕士研究生,研究方向为电机设计、电机振动噪声分析。 郭新华(1977), 男,博士,教授,研究方向为振动噪声分析与控制、电机隔振减振方法、永磁电机控制和特种电 机控制,高温电力电子用的薄膜电容技术及 IGBT 和 SiC 功率模块封测技术,智能制造技术。

领域中,减少噪声、振动和刺耳的共振声成为了汽车制造商和消费者共同关注的焦点。汽车内部噪声的来源之一是发动机和发电机系统产生的噪声,这对驾驶者和乘客的舒适性和健康造成了不可忽视的影响^[1-3]。

为了解决这一问题, 增程式汽车发电机(Range Extender Generator, REG) 应运而生。REG 作为一种 新兴的汽车动力系统,通过为电动汽车提供持续的 电力供应, 显著延长了其续航里程。然而, 虽然 REG 在提高电动汽车的续航里程方面具有重要作 用,但其自身噪声、振动和刺耳的共振声问题却成 为了制约其应用的瓶颈。REG 系统中的噪声主要来 自发动机的工作过程、发电机的旋转运动以及相关 的机械结构。这些噪声不仅会影响车内乘坐者的舒 适性,还可能对车辆结构造成潜在损害,降低整体 的可靠性和耐久性。因此,针对 REG 系统的噪声、 振动和刺耳的共振声问题的研究变得至关重要。在 本论文中,将聚焦于 REG 系统的噪声、振动和共振 声(Noise, Vibration and Harshness, NVH)特性,并 探索采用不同的措施来减轻和控制这些问题的方法。 通过深入分析和实验研究,旨在为 REG 系统的设计 和优化提供有力的支持,从而提高电动汽车的驾驶 舒适性、可靠性和市场竞争力。

Li 等人^[4]主要研究了永磁同步电机中电磁力谐 波的特征和分析方法。提出了一种基于频谱分析的 方法,用于准确分析永磁同步电机中产生的电磁力 谐波,并深入研究了电磁力谐波的形成机制和对电 机性能的影响。

Li 等人^[5]研究了永磁同步电机在不同转子槽楔 组合下的电磁振动和噪声特性。通过比较不同转子 槽楔组合情况下的电磁力和振动特性,揭示了转子 槽楔设计对电机振动噪声的影响,并提出了优化转 子槽楔设计的方法。

Liu 等人^[6]研究了考虑转子偏心情况下永磁机电 磁力的特性。通过数值计算和实验验证,深入分析 了转子偏心引起的永磁机电磁力的变化规律,并提 出了转子偏心对电机电磁性能的影响评估方法。

Shi 等人^[7]研究永磁同步电机的电磁振动和噪声问题方面,采用了场 – 电路耦合分析方法,考虑了 不同转子槽组合的影响,并对电机的振动和噪声特 性进行了深入分析。

基于上述背景,本文针对一款新能源增程式汽 车发电机中振动噪声提出优化转子内部结构的整改 优化方案。根据电机测试结果进行电磁和结构上的 优化,建立该电机的噪声场分析的有限元模型,仿 真分析电机优化后的噪声结果与原来的测试进行对 比,验证该方案的可行性。

1 电机模型参数

本文以一款增程式汽车发电机为研究对象,电 机外形如图1所示, 增程式汽车发电机是一种用于 增程式汽车的发电机系统。为了满足汽车整体的紧 凑性和空间利用效率, 增程式汽车发电机通常采用 集成布局。这意味着发电机通常与内燃机紧密结合 在一起,因此在实际应用中面临着一些噪声、振动 和刺耳声音的问题,在增程式汽车发电机中,内燃 机的运转引起的振动和噪声会传导到整个车辆结构 中,从而产生不必要的噪声和振动。这些振动和噪 声可能来自内燃机的机械振动、气动噪声、结构噪 声等。此外,与传统汽车发动机不同,增程式汽车 发电机还面临电机的电磁振动和噪声问题[8-11]。通过 研究增程式汽车发电机的 NVH 问题,并提出相应的 优化方案,可以降低振动和噪声水平,提升乘坐舒适 性,改善整体驾驶体验。这对于增程式汽车的市场接 受度和用户满意度都具有重要意义。因此, NVH 问题 的解决是增程式汽车发电机技术发展的关键之一。一 台增程式汽车发电机主要参数如表1所示。

表1 电机主要参数

参数	参数值
额定功率 P_N/kW	50
峰值功率 P _{max} /kW	60
额定转速 n _N /(r/min)	3800
定子槽数 Q	72
极对数 p	6

图1 电机模型图

2 电磁力波特征阶次分析

电机的振动和噪声特性是衡量其性能和可靠性 的重要指标之一。通过波特征阶次参数和阶次分析 技术,可以描述和分析电机的振动和噪声问题,并 为其控制、优化和故障诊断提供指导作用,从而提 升电机的质量和性能水平^[12-15]。

电机内部的电磁力是导致振动和噪声产生的主要原因。为了描述和分析电机的振动和噪声特性,可以使用波特征阶次参数和频谱分析技术。

波特征阶次是用来描述电机振动和噪声信号中周 期性成分的参数,它直接与电机的转速和运动特性相 关。通过阶次分析,可以将振动和噪声信号分解为不 同频率的成分,并与电机的转子旋转频率(主阶次)或 其倍数相关联。在阶次分析中,可以获取各个阶次的 幅值和相位信息,进而对电机的振动和噪声特性进行 定量描述^[16-19]。这对于了解振动和噪声的产生机制非 常有帮助,并为振动和噪声控制提供指导。通过识别 主要阶次和其谐波成分,可以确定振动和噪声问题的 根源,并采取相应的措施进行调整和改进。表 2、表 3、表 4、表 5 是电机关于电磁力的频谱分析:

表 2 电磁力波特征阶次表

气隙磁密构成	力波阶次	频率
但由据后告	$(h_1 + h_2)p$	$n_1 + n_2$
仅电枢反应	$(h_1 - h_2)p$	$n_1 - n_2$
ロシがは	$(\mu_1 + \mu_2)p$	$\mu_1 + \mu_2$
仪永磁体	$(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)p$	$\mu_1 - \mu_2$
电枢反应和永磁体	$(\mu + h)p$	$\mu + n$
共同作用	$(\mu - h)p$	μ – n

表中, μ 为空载气隙磁密的谐波次数; h 为绕组函数 空间谐波次数, $h = 6k_1 \pm 1(k_1 = 0, 1, 2 \dots)$; n 为 电流时间谐波次数, $n = 6k_2 \pm 1(k_2 = 0, 1, 2 \dots)$; p 为电机极对数。

表 3	仅电枢反应造成的电磁拉力时间阶次频谱分析
10	

谐波次数			n_2		
n_1	1	5	7	11	13
1	0/2	4/6	6/8	10/12	12/14
5		0/10	2/12	6/16	8/18
7			0/14	4/18	6/20
11				0/22	2/24
13					0/26

表 4	仅永磁转	子造成的	り电磁拉ス	力时间阶)	次频谱分	} 析
谐波		空间阶次 / 时间阶次				
次数			μ_2			
μ_1	1	3	5	7	9	11
1	0/2	2/4	4/6	6/8	8/10	10/12
3		0/6	2/8	4/10	6/12	8/14
5			0/10	2/12	4/14	6/16
7				0/14	2/16	4/18
9					0/18	2/20
11						0/22

表 5 电枢反应和永磁转子造成的电磁拉力时间阶次频谱分析

谐波次数			n			
m	1	5	7	11	13	
1	0/2	4/6	6/8	10/12	12/14	
3		2/8	4/10	8/14	10/16	
5		0/10	2/12	6/16	8/18	
7			0/14	4/18	6/20	
9				2/20	4/22	
11				0/22	2/24	
13					0/26	

针对电磁力的影响分析,找出主要的振动频率 和谐波成分。其次,通过振动噪声定位分析可以确 定噪声的主要来源和传播路径,进而提出改进方案 和优化措施。

3 振动噪声定位分析及改进

3.1 额定工况下振动噪声的定位分析

现象描述:根据反馈,实际电机在额定工况110 Nm 和 3500 r/min 下噪声偏大,实测结果如图 2 所 示,结果表明此时的 10 倍频和 12 倍频噪声为该工 况下噪声的主要成因。根据现场人员的反映,额定 转速下空载时 10 和 12 倍频的噪声并不明显。

图 2 基准电机额定工况噪声测试结果反馈

根据实测结果和描述,结合表 2~表5,仅电枢 反应作用时,电流谐波时间阶次为1和11,1和13, 5和7可以产生12次的电磁力谐波;仅永磁转子作 用时,电流谐波时间阶次为1和11,1和13,3和 9,5和7可以产生12次的电磁力谐波;电枢反应和 永磁转子共同作用时,1和11,1和13,5和7可以 产生12次的电磁力波。根据现场测试结果来看,空 载时的10倍频和12倍频噪声并不明显,因此应重 点关注仅电枢反应产生的12次电磁力波和电枢反应 与永磁转子共同产生的电磁力波。

仅电机本体优化时,无法考虑电流谐波对电磁 力波造成的影响,因此仅对电流基波和永磁转子谐 波造成的12次电磁力波进行优化。优化前的电机空 载气隙磁密仿真结果如图3和图4所示。由空载气 隙磁密 FFT 分析结果可知,优化前电机空载气隙磁 密中11次谐波含量相比13次谐波明显偏高,因此 需重点对空载气隙磁密中的11次谐波进行抑制。

图 4 基准电机空载气隙磁密 FFT

3.2 空载气隙磁密优化

电机转子采用开辅助槽的方式对空载气隙磁密 波形进行优化,优化后的转子如图5所示。优化后 的空载气隙磁密波形和 FFT 结果如图 6 和图 7 所示, 和基准电机相比, 气隙磁密基波幅值基本一致, 11 次和13次谐波均得到有效改善。优化前后电机的空 载性能对比如表6所示。

图 6 优化后电机空载气隙磁密波形

€6	优化前后电机空载工况结果对比

	基准电机	优化电机
空载转速/(r/min)	5500	5500
空载气隙磁密基波 幅值 / T	0. 9745	0. 9625
空载永磁磁链基波 幅值 / Wb	0. 0914	0. 0906
空载相反电势基波 幅值 / V	315.86	313.01
空载线反电势基波 幅值 / V	547.06	542. 17

3.3 额定工况电磁性能对比

优化前后电机在额定工况下的电磁性能对比如 表6所示。通过对比可以看出优化后电机电磁性能 有了一定的改善

表 7 在 110 Nm、3500 r/min 和 381 V 工况电磁性能对比

	基准电机	优化电机
相电流/(Arms/deg)	88. 5/53	88. 5/53
相电压/(Vrms/deg)	154. 91/43. 39	153. 82/43. 40
基波功率因数	0. 986	0. 986
平均转数/Nm	110. 2	110. 4
铜损耗/W	713	713
铁损耗/W	632	624
电磁效率	96. 78%	96.80%
线负荷/(Arms/mm)	49.6	49.6
电流密度/(Arms/mm ²)	7.1	7.1
热负荷/(Arms ² /mm ³)	353. 5	353.5
转矩脉动	3.69%	3.07%
L_d /mH	0. 305	0. 301
L_q /mH	0. 724	0. 719

4 噪声仿真

4.1 振动噪声仿真说明

ANSYS 有限元噪声仿真分析是一种综合性的方法,可以同时考虑电机的电磁特性、结构特性和噪声特性。通过合理的网格划分和计算方法的选择,可以预测电机在不同工况下的振动噪声水平。为电机设计和优化提供了一种有效的工具和方法,可以更好地了解和改进电机的噪声性能。

电机定子材料属性如所示,其中定子铁心密度 为考虑绕组重量后的等效密度。

表 8 电机材料机械性能参数表				
	++ *1	密度/	弹性模量/	
	竹件	$(\text{kg} \cdot \text{m}^{-3})$	MPa	
定子铁心	硅钢片	12110	2×10^{5}	
机壳	铝合金	2770	7. 1 × 10 ⁴	

考虑转子分段斜极时的电磁力施加示意图如图 8 所示。

图 8 分段斜极时的电磁力施加示意图 在电机机壳外表面建立半径为 1 m 的空气域进 行噪声仿真,空气域如图 9 所示,该区域为噪声辐 射边界。

图 9 噪声仿真空气域示意图 在噪声辐射边界均匀放置 4 个麦克风作为噪声

观测点, 4个麦克风的位置如图 10 所示。

图 10 4 个麦克风位置示意图

4.2 基准电机额定工况下的噪声仿真结果

经过有限元噪声仿真分析对基准电机的噪声辐射边界均匀放置4个麦克风和噪声辐射边界的噪声结果进行查看,在各个频率下的噪声大小如图11、图12、图13、图14、图15、图16所示。

图 12 基准电机 1 号麦克风位置处的 A 计权声压级曲线

图 13 基准电机 2 号麦克风位置处的 A 计权声压级曲线

图 14 基准电机 3 号麦克风位置处的 A 计权声压级曲线

图 15 基准电机 4 号麦克风位置处的 A 计权声压级曲线

图 16 基准电机噪声辐射边界的 A 计权声压级曲线

4.3 改进电机额定工况下的振动噪声仿真结果

同时对改进电机的噪声辐射边界均匀放置 4 个 麦克风和噪声辐射边界的噪声结果进行查看,在各 个频率下的噪声大小如图 17、图 18、图 19、图 20、 图 21、图 22 所示。

图 22 改进电机噪声辐射边界的 A 计权声压级曲线

f/Hz

改进电机转子结构后,从 4200 Hz 声压级分布 情况看,电机在额定工况工作时,空气域内的 A 计 权声压级要整体小于基准电机;电机在 4 个麦克风 位置处的声压级测试结果表明,4200 Hz 下的 A 计 权声压级均小于基准电机;基准电机在噪声辐射边 界处 4200 Hz 下的 A 计权声压级为 76.772 dB,仅改 进转子后,电机在噪声辐射边界处 4200 Hz 下的 A 计权声压级为 71.554 dB,比基准电机降低了 5.2 dB 左右,改进后效果明显。

5 结 论

本文以一款增程式汽车发电机为研究对象,针 对电机噪声过大的问题,通过电磁力波阶次方面进 行分析,采用改变转子内部结构,在电机转子开辅 助槽的方式并通过有限元仿真分析验证结果,该方 法有效抑制了电枢电流中的11和13次谐波与永磁 转子产生的空载气隙磁密中的11和13次谐波,极 大减少了电机所产生的的电磁噪声,明显提高了电 机的 NVH 性能。

参考文献

- [1] 唐任远.现代永磁同步电机理论与设计[M].北京:机械工业 出版社,1997.
- [2] 伍先俊,李志明. 汽车电机噪声机理和降噪方法[J]. 微特电机, 2003(1): 14-16.
- [3] 姜威威,耿森润,李文. 电机振动的频谱分析[J]. 工业控制 计算机, 2011(11): 48-49
- [4] Li H, Zhang H, Liu B. Characteristics and Analysis of Electromagnetic Force Harmonics in Permanent Magnet Synchronous Motors [J]. IEEE Transactions on Magnetics, 2018, 54(11): 1-8.
- [5] Li Z, et al. Investigation of Electromagnetic Vibration and Noise of Permanent Magnet Synchronous Motors Considering Different Rotor

Slot Combinations [J]. IEEE Transactions on Industrial Electronics, 2017, 64(7), 5716-5726.

- [6] Liu B, et al. Analysis of Electromagnetic Forces in Permanent Magnet Machines Considering Rotor Eccentricity[J]. IEEE Transactions on Magnetics, 2017, 50(2), 1-4.
- [7] Shi Quan, Li Banglong, Zhou Cangsong. Analysis of Electromagnetic Vibration and Noise of Permanent Magnet Synchronous Motor Based on Field-circuit Coupling[J]. Vibroengineering, 2022(6).
- [8] 吴刚. 电动汽车驱动总成噪声测试分析[J]. 北京汽车, 2014(4): 35-38.
- [9] 李志申,崔庆涛,方顺亭.新能源驱动电机 NVH 开发研究[J].内燃机与配件,2022(19):109-111.
- [10] 朱怡迪. 电动汽车永磁同步电机的 NVH 性能研究 [D]. 大连: 大连理工大学, 2022.
- [11] 杨蒙,翟云龙,赵建,等. 纯电动汽车电驱动总成振动噪声对 整车 NVH 性能影响研究[C]. 中国汽车工程学会年会论文集, 2018: 1146-1150.
- [12] 喻皓,范泽义,王配,等.新能源驱动电机 NVH 设计与优化[J].时代汽车,2018(7):91-92,107.
- [13] Zhang Nian, Sun Chao, Liu Jing, et al. A Harmonic Injection Method for Improving NVH Performance of Permanent Magnet Synchronous Motor[J]. Physics: Conference Series, 2021, 1802(3).
- [14] 李昌乐. 车载永磁同步电机振动噪声特性分析与优化[D]. 西安: 长安大学, 2020.
- [15] 吴光强, 栾文博. 汽车传动系相关 NVH 问题的动力学研究论 述[J]. 机械工程学报, 2013, 49(24): 108-116.
- [16] 钱喆,唐光华,王群京,等. 转子结构优化削弱车用永磁同步
 电机振动噪音[J]. 电机与控制学报,2021,25(10):124.
- [17] 徐珂,应红亮,黄苏融,等.转子分段斜极对永磁同步电机电磁噪声的削弱影响[J].浙江大学学报,2019,53(11):7.
- [18] 郑江,代颖,石坚. 车用永磁同步电机的电磁噪声特性[J]. 电 工技术学报, 2016, 31(S1): 53.
- [19] 邢泽智,王秀和,赵文良,等.表贴式永磁同步电机电磁激振 力波计算与定子振动特性分析[J].中国电机工程学报,2021, 41(14):5004.

车用永磁同步电机的电磁噪声优化研究

陈致初1, 史俊旭1, 周 洋2, 胡勇峰1, 杨 斌1

(1. 株洲中车时代电气股份有限公司,湖南 株洲 412001; 2. 懿朵信息科技(上海)有限公司,上海 201108)

摘 要:随着新能源汽车的普及,新能源电驱总成噪声问题越来越受到关注。新能源电驱总成噪声问题主要由电机 本体、控制器、减速器引起。由于电机本体电磁力激励引起的噪声是主要来源,本文针对车用永磁同步电机的电磁 噪声进行分析优化,通过遗传算法进行多目标寻优,降低电机本体电磁力所带来的噪声。经过计算,该优化方法可 以显著降低目标电磁力,降低车用永磁同步电机的电磁噪声。

关键词:车用电机;电磁噪声;遗传算法;多目标寻优

中图分类号: TM351; TM341; TM301.4+3 文献标志码: A 文章编号: 1001-6848(2023)10-0077-06

Research on the NVH Optimization of Vehicle IPM Motor

CHEN Zhichu¹, SHI Junxu¹, ZHOU Yang², HU Yongfeng¹, YANG Bin¹

(1. Zhuzhou CRRC Times Electric Co., Ltd., Zhuzhou Hunan 412005, China;

2. Yiduo Information Technology (Shanghai) Co., Ld., Shanghai 201108, China)

Abstract: With the widespread adoption of new energy vehicles, the electromagnetic noise issue in Electric Vehicle(EV) powertrain has gained significant attention. The noise problem of electric powertrain primarily originates from the electric motor, controller, and gearbox. Among these, noise induced by electromagnetic forces in the electric motor is the major contributor. This paper focused on the analysis and optimization of electromagnetic noise from permanent magnet synchronous motors (PMSMs) in EVs. Proposed a multi-objective genetic algorithm to achieve noise reduction by optimizing the electromagnetic forces generated within the motor. The results demonstrate that this optimization method significantly reduced the targeted electromagnetic forces, consequently mitigating the electromagnetic noise in automotive PMSMs.

Key words: electric powertrain; electromagnetic noise; genetic algorithm; multi-objective optimization

0 引 言

内置式永磁同步电机由于高效区宽、转矩密度 高、结构紧凑等诸多优点而成为电动汽车的主要驱 动电机类型之一。车用电机的高转矩、宽调速的牵 引特性需求和小尺寸、轻量化的结构设计要求往往 导致电机电磁力幅值大、电机结构刚度较差,容易 产生较大的电磁振动和电磁噪声,影响新能源汽车 的驾乘舒适性。因此,在电机设计时不仅需要考核 电机的电磁性能指标,电机的振动噪声特性也需要 引起重视。

电机的结构噪声是电机结构受到激振源激励而 产生的,主要来源有机械振动和电磁振动。机械振 动由轴承摩擦或转子不平衡等因素引起,可以通过 采用低噪声轴承、提高加工工艺和装配精度等措施 来改善;电磁振动由作用于定子结构上的电磁力波 引起,是引起车用永磁同步电机噪声的重要因素。

Gieras^[1]首次提出电机电磁噪声主要由定、转子 之间的径向电磁力产生。文献[2]全面阐述了电动 汽车 PMSM 电机的 NVH 特性,将电机激振源归为切 向电磁力和定、转子之间的径向电磁力波。文献 [3]通过优化转子隔磁桥来降低定子齿部电磁力, 并利用仿真与实验对比分析了优化前后的噪声结果, 优化后的电机在保证电磁性能的前提下有效降低了 电磁噪声。文献[4]通过在转子表面增加辅助槽削 弱电机电磁噪声。加槽后,电机平均转矩基本保持 不变,转矩脉动与电磁噪声均有所改善。文献[5] 对转子铁心几何参数进行了优化,削弱了共振频段

基金项目:湖南省科技创新领军人才计划(2021RC4050)

通讯作者: 史俊旭(1987), 男, 硕士, 工程师, 研究方向为电机设计。

收稿日期: 2023-07-21, 修回日期: 2023-08-11

作者简介:陈致初(1982),男,硕士,正高级工程师,研究方向为电机、电控技术研发及产品开发。

的径向电磁力,改善了电机电磁噪声。通常转子结 构对模态影响很小,建立电机三维仿真模型时可以 忽略转子结构,但高速电机或转子轴承长的特殊电 机需要考虑转子结构对模型的影响^[6]。文献[7]认 为机壳端盖的质量效应要大于刚度效应,会降低电 机固有频率,对电机模态影响较大。

由上分析,电磁力参数和结构模态参数是影响 电机电磁振动噪声的两个关键因素^[89]。当电磁力空 间阶次与结构模态阶次相同并且电磁力频率与结构 模态固有频率接近时,会产生较大的噪声峰值点。 由于车用电机处于一个宽调速的工况,电磁力频率 与结构模态固有频率接近也很难避免,通过结构模 态频率优化很难降低电机全转速域噪声特性。因此, 有必要研究电机电磁力优化措施,降低激励力的幅 值特性,达到电磁噪声优化的目的。

本文针对一款车用电机结构噪声进行优化,首 先确定需要优化的电磁力空间阶次和频率阶次,再 以转子设计参数为优化变量,通过遗传算法^[10]进行 多目标寻优,达到优化电磁噪声的目的。

1 NVH 问题分析

电机电磁力的计算主要分为两部分:切向电磁 力(即转矩)和径向电磁力。一般来说,电磁力的计 算方法有两种:虚功法和 Maxwell 张量法。考虑到 Maxwell 张量法计算需要保存场数据,计算量较大, 而且在定子齿数足够的情况下,虚功法计算的集中 力具有足够的空间采样频率,计算结果也十分准确, 因此本文采取虚功法进行计算。径向电磁力通过定 子齿上的集中力来表征,如图1所示,电磁力基本 集中在定子齿顶部,在1/2齿高的区域切开视为集 中力的计算区域。

图1 定子齿部电磁力示意图

本文中所计算的电机为永磁同步电机,磁钢结构 采取双V形,其转子模型如图2所示,具体的电机主 要参数如表1所示。由于在计算噪声的过程中,噪声 是与结构的模态参数强相关的,电机的电磁力需要加 载在实际的电驱总成模型上,计算的噪声结果才能更 接近真实工况。加载的电驱总成模型如图3所示。

图2 转子模型示意图

表1 电机主要参数

参数	参数值
峰值功率/kW	280
直流母线电压/V	730
最大电流/A	420
连接方式	Y
极对数	3
槽数	54
绕组层数	6
转速范围/(r/min)	$0 \sim 18000$

图 3 电驱总成模型

评价电机噪声一般分析大扭矩工况和小扭矩工 况,本文根据电磁力数据计算了全电门(Wide Open Throttle, WOT) 工况和 25% 电门开度 (Part Open Throttle 25%, POT25%) 工况下的噪声结果, 如图 4 所 示。由于电驱噪声的峰值主要集中在0~12000 r/min, 因此本文主要分析优化 0~12000 r/min 范围内的噪 声特性。从图中可以看出,大扭矩工况下噪声的峰 值主要由空间6阶的径向力,54th转矩谐波以及空间 0 阶,转频 54th径向力引起;小扭矩工况下噪声的峰 值主要是54th转矩谐波。空间6阶的径向力为6极 电机的基波,在保持输出转矩的情况下,其幅值难 以削减,因此本文主要考虑4000 r/min 时 54th转矩 谐波(即齿谐波)和8000 r/min 时54th径向力。图5、 图 6 分别为 WOT 工况与 POT25% 工况下主要的转矩 谐波和径向力数据。由图 5、图 6 可知, 54th转矩谐 波和 54th径向力较大。因此本文将优化目标定为大 扭矩工况的 54th转矩谐波和 54th径向力、小扭矩工况 的 54th转矩谐波。

2 优化方法

本文采取 NSGA-II 遗传算法对电机 NVH 进行优 化设计。NSGA-II 使用快速非支配排序法、采用精 英策略与计算拥挤度将复杂度降低至 O(mN²),大 大减少了计算方案数,能够更加快速地得到全局最 优解,其中 *m* 为目标数,*N* 为种群数。具体的筛选 流程如图 7 所示。

结合本文计算模型,具体计算流程如下:

- (1)建立电机参数化模型;
- (2)确定计算工况点;
- (3)确定优化变量、范围;
- (4)确定几何约束;
- (5)确定性能约束条件;
- (6)确定优化目标。

图 7 NSGA-II 流程图

2.1 优化变量的选取

本文的参数化模型为整个转子拓扑。参与优化 的变量为转子辅助槽的尺寸、两层隔磁桥的厚度和 长度、两层磁钢的夹角、厚度和长度以及一些圆角 半径等共计16个变量,如图8所示,为优化变量的 示意图。

图 8 转子参数化模型示意图

2.2 计算工况点的选取

考虑到计算量巨大,不可能采取计算所有工况 点参与优化的方式,通常仅计算必要的工况点。如 第一章所述,需要计算 WOT 工况的 4000 r/min 以及 8000 r/min 电磁力,POT25% 的 4000 r/min 电磁力。 另外为了保证优化过程中电机的路谱效率不减少, 同时计算 50 Nm@ 8000 r/min 时的工况数据,把该工 况的铁耗作为约束条件。如图 9 所示,50 Nm@ 8000 r/min 工况点基本涵盖了大部分路谱工作点。对于路 谱效率,主要考虑绕组铜耗和铁耗。一般而言,在 转矩性能基本不变的情况下铜耗不变,路谱效率变 化主要考虑低扭矩区的铁耗。只要约束 50 Nm@ 8000 r/min 工况点的铁耗,路谱效率就不会降低, 因此加入 50 Nm@ 8000 r/min 工况点的铁耗计算。所 有计算工况点如表 2 所示。

2.3 几何约束

参数化转子模型由于有很多圆角,常存在几何 干涉。转子几何模型的合理性主要分为三类,第一 类是连续轮廓无交点;第二类是不同轮廓无交点;

铁耗

50 Nm@ 8000 r/min

第三类是限制几何最小尺寸,以满足机械强度。本 文的转子模型要求隔磁桥不小于1 mm。

2.4 性能约束与优化目标

遗传算法可以规避大量优化效果不佳的优化方 案,但当优化目标过多时,常面临优化目标权重分 配的问题。在工程应用中,当优化目标超过3个, 权重分配不合理将导致难以获得最优解。经过研究, 把部分优化目标视为强约束条件,优化目标控制在 2个以内,其效果往往较好。当某个性能参数偏离 约束条件时,目标函数在原值基础上会减去惩罚项 的值,该个体对应的适应度值也会下降,被淘汰的概 率上升,因此惩罚项起到了变相约束的作用,同时将 有约束问题转换为无约束问题。本案例中将峰值转 矩、铁耗、54th径向力作为约束条件,大扭矩和小扭 矩工况 54th转矩谐波作为优化目标。

2.5 优化方案输出

根据上述计算设置,经过 50 多代计算,优化目标已呈现明显的 Pareto 前沿,如图 10 所示,图中横坐标为小扭矩 54th转矩谐波,纵坐标为大扭矩 54th 转矩谐波,菱形小方框为原始方案的结果,圆形小 方框为优化方案结果。选取过程中,使大扭矩和小 扭矩 54th转矩谐波接近并尽可能小,使得低频噪声 峰值较低。可以看出,优化后的大扭矩和小扭矩 54th转矩谐波相比原方案大幅度降低。

3 结果对比

根据图 10 所选的优化方案,计算其主要电磁力 谐波,如图 11 和图 12 所示。通过对比,WOT 工况 下 54th转矩谐波@ 4000 r/min 降低至原方案的 1/3 左 右,其他次谐波有小幅上升,但对噪声贡献量小, 可忽略不计;54th径向力@ 8000 r/min 降低至原方案 的 1/4。POT25% 工况下 54th转矩谐波@ 4000 r/min 降低至原方案的 1/2,由于小扭矩工况下,整体电 磁力谐波幅值都较小,其噪声水平也较低,其他谐 波不予讨论。

10 期

图 12 POT25% 工况电磁力谐波 - 原方案与优化方案对比 优化方案的关键电磁力谐波都大幅下降, 通过 计算其等效声功率,优化方案的 WOT 工况和 POT25%工况的噪声结果如图 13 所示。

图 13 优化方案计算等效声功率

为了清晰对比优化方案和原方案的噪声, 降噪 量数据显示在表3中。其中仿真降噪量是图4和图 13 的峰值点差值,理论降噪量由 20lg(Opt/Origin) 计算而来。

由表3可知,虽然理论降噪量和仿真降噪量存 在一定差异,但总体趋势一致,优化方案关键的噪 声峰值点都得到了较大幅度的降低。

表3 降噪量

电磁力	理论	仿真
	降噪量	降噪量
Torque_ 54 th (WOT@ 4000 r/min)	9.5 dB	7.1 dB
RadialForce_ 54 th (WOT@ 8000 r/min)	4.5 dB	5.7 dB
Torque_ 54 th (POT25%@4000 r/min)	5.4 dB	2.5 dB

结 论 4

本文研究了基于遗传算法多目标寻优的车用永 磁同步电机电磁噪声优化方法,研究的主要结论如 下: (1)运用遗传算法优化车用永磁同步电机的电

200

5000 6000 7000 8000 9000 10000 11000 12000 *n/(r/min)*

磁噪声,以转子辅助槽尺寸、隔磁桥尺寸、磁钢尺 寸及夹角为优化变量,电机在优化后最大降噪量达 到7.1 dB,显著提高了产品的 NVH 性能。(2)针对 多目标优化的权重分配问题,本文将部分优化目标 视为强约束条件,通过将峰值转矩、铁耗、54th径向 力作为约束条件,大扭矩和小扭矩工况 54th转矩谐 波作为优化目标,获得了降噪效果显著的优化方案。 (3)通过多物理场分析方法对车用电机电磁噪声问 题进行识别,规范了车用电机电磁噪声问题优化时, 变量选择、目标选择、约束条件的制定基本原理。 本文优化方法显著降低了车用电机的电磁噪声,为 车用电机电磁噪声问题分析优化提供了一种有效的 思路。

参考文献

- [1] Gieras J F, Wang C, Lai J C. Noise of Polyphase Electric Motors[M]. Boca Raton: CRC Press, 2006.
- [2] Deng W, Zuo S. Electromagnetic Vibration and Noise of the Permanent-Magnet Synchronous Motors for Electric Vehicles: An Overview
 [J]. IEEE Transactions on Transportation Electrification, 2019, 5

 (1): 59-70.

- [3] 王晓远,贺晓钰,高鹏.电动汽车用 V 型磁钢转子永磁电机的
 电磁振动噪声削弱方法研究[J].中国电机工程学报,2019,39
 (16):4919-4926,4994.
- [4] 乔琰,刘景林,王丹青. 商用电动车用永磁同步电机电磁振动 噪声削弱方法[J]. 微电机, 2022, 55(8): 8-13.
- [5] 胡溧,张桐,袁爽,等.加速工况下永磁同步电机电磁噪声分析 与优化[J].微电机,2022,55(1):25-29.
- [6] Edej D, Zhu ZQ, Howe D. Rotor Resonances of High-speed Permanent Magnet Brushless Machines [J]. IEEE Transactions on Industry Applications, 2002, 38(6): 1542.
- [7] Cai W, Pillay P, Tang Z J. Impact of Stator Windings and End-bells on Resonant Frequencies and Mode Shapes of Wwitched Reluctance Motors[J]. IEEE Transactions on Industry Applications, 2002, 38 (4): 1027.
- [8] 苏辉,张立军,孟德建,等.车用永磁同步电机电磁振动噪声仿 真和试验研究[J].振动与冲击,2022,41(12):136-142,214.
- [9] Verez G, Barakat G, Amara Y, et al. Impact of Pole and Slot Combination on Vibrations and Noise of Electromagnetic Origins in Permanent Magnet Synchronous Motors[J]. IEEE Transactions on Magnetics, 2015, 51(3): 1-4.
- [10] Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.

(上接第58页)

- [4] Zhang Z S, Wang C C, Zhou M L, et al. Parameters Compensation of Permanent Magnet Synchronous Motor in Flux Weakening Region for Rail Transit[J]. IEEE Transactions on Power Electronics, 2020, 35(11): 12509-12521.
- [5] 刘细平,胡卫平,邹永玲,等.改进粒子群算法的永磁同步电机多参数辨识[J].电机与控制学报,2020,24(7):112-120.
- [6] Yang J X, Altintas Y. A Generalized On-line Estimation and Control of Five-axis Contouring Errors of CNC Machine Tools [J]. Machine Tools & Manufacture, 2015 (88): 9-23.
- [7] 荀倩,王培良,李祖欣,等.基于递推最小二乘法的永磁伺服

系统参数辨识[J]. 电工技术学报, 2016, 31(17): 161-169.

- [8] 李旭春,张鹏,严乐阳,等.具有参数辨识的永磁同步电机无 位置传感器控制[J].电工技术学报,2016,31(14):139-147,164.
- [9] 张梓绥,王琛琛,游小杰,等.基于单Q轴电流调节器的永磁 同步电机电流轨迹控制[J].电工技术学报,2018,33(24): 5779-5788.
- [10] 徐波, 沈海峰. 含不确定参数的永磁同步电机位置自适应控制 [J]. 电机与控报, 2006, 32(5): 482-486.

e Second	₽\$₽\$₽\$₽\$₽\$₽\$₽\$₽\$₽\$₽\$₽\$₽\$₽\$\$\$\$\$\$\$\$\$\$\$\$\$)
3 S S	"		邮发代号: 52-92	; 3
5 33	《似电化》(《判)		订价:8元/期	1) 3
JaJaJaJaJaJaJaJaJaJaJ		期,读者可到当地邮局订阅,本刊亦可破订、零购。	年价:96元/年	/ 3)
	全年 12		编辑部邮购(含快递费): 300 元/年 🖇	1) 3
	欢迎	卫投稿!欢迎订阅!欢迎刊登广告!	ن م ب) 3
	国内刊号	룩: CN61 - 1126/TM	国际刊号: ISSN 1001-6848	3
	邮箱	旨: micromotors @ vip. sina. com	e e e) 3)
32.52	地址	止: 高新区上林苑四路 36 号(710117)	电话: 029-84276641	3